ClickHouse

目录

ClickHouse 基础概念

ClickHouse 简介

ClickHouse 是由俄罗斯搜索引擎巨头 Yandex 于 2016 年开源的列式数据库管理系统(DBMS),专门为在线分析处理(OLAP)场景设计。其名称来源于 “Click” 和 “House” 的组合,寓意为"点击数据仓库",最初就是为了分析 Yandex.Metrica(网站分析平台)产生的海量点击流数据而诞生。

发展历程

  • 2009年:Yandex 内部开始研发,用于替代 MySQL 处理 Metrica 的数据分析
  • 2016年6月:正式开源,采用 Apache 2.0 许可证
  • 2021年:成立 ClickHouse Inc. 公司,获得 2.5 亿美元融资
  • 2024年:全球数千家企业使用,包括腾讯、字节跳动、Uber、Cloudflare 等

技术定位

  • OLAP 专用:不适合 OLTP(事务处理),专注于复杂分析查询
  • 列式存储:数据按列组织,而非传统的按行存储
  • MPP 架构:大规模并行处理(Massively Parallel Processing)
  • 实时分析:支持秒级查询响应,适合实时报表和监控

核心优势

1. 极致的查询性能

  • 亚秒级响应:对于数十亿行数据的聚合查询,通常在 1 秒内返回结果
  • 高吞吐量:单服务器可达到每秒数百万到数十亿行的扫描速度
  • 性能对比
    • 比传统行式数据库(MySQL)快 100-1000 倍
    • 比 Hadoop/Hive 快 10-100 倍
    • 与 Druid、Presto 等 OLAP 引擎相比,在大多数场景下性能更优

2. 超高的数据压缩比

  • 压缩率:通常可达 10:1 到 40:1,某些场景甚至达到 100:1
  • 存储成本:1TB 原始数据压缩后可能只占用 25-100GB 磁盘空间
  • 压缩算法
    • 通用压缩:LZ4(默认,速度快)、ZSTD(压缩率高)
    • 专用编码:Delta、DoubleDelta、Gorilla、T64 等
  • 智能压缩:根据数据类型和分布自动选择最优压缩策略

3. 实时数据写入与查询

  • 高并发写入:支持每秒数百万行的写入速度
  • 即写即查:数据写入后立即可查询,延迟通常在秒级
  • 批量优化:建议批量写入(每批 1000-10000 行),避免频繁小批次写入

4. 水平扩展能力

  • 线性扩展:增加节点可线性提升性能和容量
  • 无共享架构:节点之间不共享存储,避免单点瓶颈
  • 弹性伸缩:可动态增减节点,无需停机

5. 完善的 SQL 支持

  • 标准兼容:支持大部分 SQL-92/99 标准
  • 丰富函数:1000+ 内置函数,涵盖数学、字符串、日期、数组、JSON 等
  • 高级特性:窗口函数、CTE、子查询、JOIN、物化视图等
  • 扩展语法:支持数组、嵌套结构、Bitmap、HyperLogLog 等复杂类型

6. 成本效益

  • 硬件要求低:普通服务器即可运行,无需昂贵的专用硬件
  • 存储成本低:高压缩比大幅降低存储成本
  • 运维简单:无需复杂的调优,开箱即用性能优异

应用场景

1. 实时数据分析

  • 用户行为分析:网站/APP 点击流、用户路径、转化漏斗
  • 业务指标监控:实时大屏、KPI 看板、业务报表
  • A/B 测试分析:实验效果评估、多维度对比
  • 典型案例
    • Yandex.Metrica:每天处理 200 亿事件
    • 腾讯:广告投放效果分析
    • 字节跳动:用户增长分析

2. 日志分析与监控

  • 应用日志:错误日志、访问日志、审计日志
  • 系统监控:服务器性能、网络流量、资源使用
  • 安全分析:入侵检测、异常行为识别
  • 典型案例
    • Cloudflare:每天分析 1 万亿条日志
    • Uber:实时监控全球订单和司机状态

3. 时序数据存储

  • IoT 数据:传感器数据、设备状态、环境监测
  • 金融数据:股票行情、交易记录、风控指标
  • 运维监控:Prometheus、Grafana 集成
  • 典型案例
    • 某电力公司:存储数千万智能电表的实时数据
    • 某证券公司:存储全市场 Tick 级行情数据

4. 数据仓库与 BI

  • 企业数据仓库:替代传统 MPP 数据库(Vertica、Greenplum)
  • BI 报表:对接 Tableau、Superset、Metabase 等工具
  • 即席查询:支持数据分析师自由探索数据
  • 典型案例
    • 某电商平台:构建实时数据仓库,支持千人千面推荐
    • 某游戏公司:玩家行为分析和运营报表

5. 机器学习特征工程

  • 特征提取:从海量数据中快速计算特征
  • 样本生成:生成训练样本和测试样本
  • 模型评估:实时计算模型指标
  • 典型案例
    • 某推荐系统:实时计算用户画像特征
    • 某风控系统:实时计算交易风险特征

6. 广告技术(AdTech)

  • 广告投放:实时竞价(RTB)数据分析
  • 效果归因:多触点归因分析
  • 反作弊:异常点击检测
  • 典型案例
    • 某广告平台:每天分析数百亿次广告曝光和点击

不适合的场景

  • OLTP 事务处理:不支持事务、行级更新和删除
  • 高频小批量写入:每次写入少于 1000 行会影响性能
  • Key-Value 查询:不适合根据主键查询单条记录
  • 全文搜索:不如 Elasticsearch 专业
  • Blob 存储:不适合存储大文件(图片、视频等)

与其他数据库对比

特性ClickHouseMySQLPostgreSQLHiveDruidElasticsearch
存储方式列式行式行式列式列式倒排索引
查询性能⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
写入性能⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
压缩比10-40:12-3:12-3:15-10:15-10:13-5:1
SQL 支持完善完善完善基础有限有限
事务支持
实时性秒级毫秒级毫秒级分钟级秒级秒级
扩展性线性有限有限线性线性线性
运维复杂度
适用场景OLAPOLTPOLTP离线分析实时分析日志搜索

性能基准测试(10亿行数据聚合查询)

  • ClickHouse:0.5-2 秒
  • Druid:2-5 秒
  • Presto:5-15 秒
  • Hive:30-120 秒
  • MySQL:超时(>300 秒)

ClickHouse 架构设计

ClickHouse 采用了经典的 Shared-Nothing 架构,每个节点独立存储和计算,通过网络协同工作。这种架构设计使得 ClickHouse 具备了出色的水平扩展能力和高可用性。

整体架构

单机架构

graph TB
    subgraph client["客户端层"]
        CLI["CLI客户端"]
        JDBC["JDBC/ODBC"]
        HTTP["HTTP接口"]
    end
    
    subgraph server["ClickHouse Server"]
        direction TB
        
        subgraph interface["接口层"]
            TCP["TCP协议"]
            HTTPAPI["HTTP API"]
            MySQL["MySQL协议"]
        end
        
        subgraph query["查询处理层"]
            Parser["SQL解析器"]
            Analyzer["语义分析器"]
            Optimizer["查询优化器"]
            Planner["执行计划生成器"]
        end
        
        subgraph execution["执行层"]
            Executor["执行引擎"]
            Pipeline["Pipeline执行"]
            Vectorization["向量化计算"]
            Parallel["并行处理"]
        end
        
        subgraph storage["存储层"]
            Engine["存储引擎"]
            MergeTree["MergeTree引擎"]
            Buffer["Buffer引擎"]
            Memory["Memory引擎"]
        end
        
        subgraph data["数据层"]
            Parts["数据分片Parts"]
            Index["索引文件"]
            Marks["标记文件"]
            Columns["列数据文件"]
        end
    end
    
    subgraph external["外部依赖"]
        ZK["ZooKeeper<br/>元数据协调"]
        Disk["磁盘存储"]
        Config["配置文件"]
    end
    
    CLI --> TCP
    JDBC --> TCP
    HTTP --> HTTPAPI
    
    TCP --> Parser
    HTTPAPI --> Parser
    MySQL --> Parser
    
    Parser --> Analyzer
    Analyzer --> Optimizer
    Optimizer --> Planner
    Planner --> Executor
    
    Executor --> Pipeline
    Pipeline --> Vectorization
    Vectorization --> Parallel
    
    Parallel --> Engine
    Engine --> MergeTree
    Engine --> Buffer
    Engine --> Memory
    
    MergeTree --> Parts
    Parts --> Index
    Parts --> Marks
    Parts --> Columns
    
    Columns --> Disk
    ZK -.元数据同步.-> server
    Config -.配置加载.-> server
    
    style client fill:#e3f2fd
    style interface fill:#f3e5f5
    style query fill:#fff3e0
    style execution fill:#e8f5e9
    style storage fill:#fce4ec
    style data fill:#f1f8e9
    style external fill:#ffe0b2

分布式集群架构

graph TB
    subgraph clients["客户端"]
        Client1["应用1"]
        Client2["应用2"]
        Client3["应用3"]
    end
    
    subgraph cluster["ClickHouse 集群"]
        subgraph shard1["分片1 Shard1"]
            Node1["节点1<br/>主副本"]
            Node2["节点2<br/>从副本"]
        end
        
        subgraph shard2["分片2 Shard2"]
            Node3["节点3<br/>主副本"]
            Node4["节点4<br/>从副本"]
        end
        
        subgraph shard3["分片3 Shard3"]
            Node5["节点5<br/>主副本"]
            Node6["节点6<br/>从副本"]
        end
    end
    
    subgraph coordination["协调服务"]
        ZK1["ZooKeeper1"]
        ZK2["ZooKeeper2"]
        ZK3["ZooKeeper3"]
    end
    
    subgraph lb["负载均衡"]
        LB["负载均衡器<br/>HAProxy/Nginx"]
    end
    
    Client1 --> LB
    Client2 --> LB
    Client3 --> LB
    
    LB --> Node1
    LB --> Node3
    LB --> Node5
    
    Node1 -.复制.-> Node2
    Node3 -.复制.-> Node4
    Node5 -.复制.-> Node6
    
    Node1 -.元数据.-> ZK1
    Node2 -.元数据.-> ZK1
    Node3 -.元数据.-> ZK2
    Node4 -.元数据.-> ZK2
    Node5 -.元数据.-> ZK3
    Node6 -.元数据.-> ZK3
    
    ZK1 -.同步.-> ZK2
    ZK2 -.同步.-> ZK3
    ZK3 -.同步.-> ZK1
    
    style clients fill:#e3f2fd
    style shard1 fill:#fff3e0
    style shard2 fill:#e8f5e9
    style shard3 fill:#f3e5f5
    style coordination fill:#fce4ec
    style lb fill:#ffe0b2

核心组件详解

1. 接口层(Interface Layer)

协议端口特点适用场景
Native TCP9000二进制协议,性能最高官方客户端、JDBC/ODBC
HTTP8123RESTful API,易于集成Web应用、脚本调用
MySQL9004兼容MySQL协议MySQL客户端工具
PostgreSQL9005兼容PostgreSQL协议PostgreSQL客户端
gRPC9100高性能RPC微服务架构

连接示例

# Native TCP(推荐)
clickhouse-client --host=localhost --port=9000

# HTTP
curl 'http://localhost:8123/?query=SELECT 1'

# MySQL协议
mysql -h localhost -P 9004 -u default

2. 查询处理层(Query Processing Layer)

SQL解析器(Parser)

  • 将SQL文本解析为抽象语法树(AST)
  • 支持标准SQL和ClickHouse扩展语法
  • 错误检测和语法验证

语义分析器(Analyzer)

  • 检查表、列、函数是否存在
  • 类型推导和类型检查
  • 权限验证

查询优化器(Optimizer)

  • 谓词下推:将WHERE条件尽早应用,减少数据扫描
  • 投影下推:只读取需要的列
  • 分区裁剪:根据分区键过滤不需要的分区
  • 索引选择:选择最优的索引策略
  • JOIN优化:选择最优的JOIN算法(Hash Join、Merge Join)
  • 聚合优化:两阶段聚合、预聚合

执行计划生成器(Planner)

  • 生成物理执行计划
  • 确定数据读取顺序
  • 分配计算资源

查询优化示例

-- 原始查询
SELECT user_id, COUNT(*) 
FROM events 
WHERE date >= '2024-01-01' AND event_type = 'click'
GROUP BY user_id;

-- 优化后的执行计划
1. 分区裁剪:只扫描 2024-01-01 之后的分区
2. 谓词下推:在读取时过滤 event_type = 'click'
3. 投影下推:只读取 user_id  event_type 
4. 并行聚合:多线程并行执行 GROUP BY
5. 两阶段聚合:先局部聚合,再全局聚合

3. 执行层(Execution Layer)

Pipeline 执行模型

  • 流式处理:数据以Block为单位流式处理,无需等待全部数据加载
  • 算子链:多个算子组成Pipeline,数据在算子间流动
  • 内存高效:避免大量中间结果占用内存

向量化计算(Vectorization)

  • SIMD指令:利用CPU的SIMD指令集(SSE、AVX、AVX-512)
  • 批量处理:一次处理一个Block(默认65536行)
  • 性能提升:比逐行处理快10-100倍

并行处理(Parallelization)

  • 线程池:根据CPU核心数自动调整线程数
  • 数据分片:将数据分成多个Part并行处理
  • 动态调度:根据负载动态分配任务

执行流程示例

flowchart LR
    subgraph pipeline["Pipeline执行流程"]
        Read["读取数据<br/>Read"]
        Filter["过滤<br/>Filter"]
        Project["投影<br/>Project"]
        Agg["聚合<br/>Aggregate"]
        Sort["排序<br/>Sort"]
        Limit["限制<br/>Limit"]
    end
    
    Disk["磁盘"] --> Read
    Read -->|Block1| Filter
    Read -->|Block2| Filter
    Read -->|Block3| Filter
    Filter --> Project
    Project --> Agg
    Agg --> Sort
    Sort --> Limit
    Limit --> Result["结果"]
    
    style Read fill:#e3f2fd
    style Filter fill:#fff3e0
    style Project fill:#e8f5e9
    style Agg fill:#f3e5f5
    style Sort fill:#fce4ec
    style Limit fill:#ffe0b2

4. 存储层(Storage Layer)

存储引擎架构

  • 插件化设计:支持多种存储引擎,满足不同场景需求
  • 引擎继承:MergeTree系列引擎共享核心逻辑
  • 灵活配置:每个表可以使用不同的引擎

MergeTree 引擎(核心)

  • LSM-Tree架构:写入快速,后台合并
  • 分区(Partition):按时间或其他维度分区
  • 分片(Part):每次写入生成一个Part
  • 合并(Merge):后台异步合并小Part为大Part
  • 索引:稀疏索引、跳数索引、Bloom Filter

其他引擎

引擎特点适用场景
ReplicatedMergeTree支持副本复制高可用场景
Distributed分布式表集群查询
Buffer内存缓冲高频写入
Memory纯内存存储临时数据
Kafka对接Kafka实时数据接入
MySQL对接MySQL数据联邦查询

5. 数据层(Data Layer)

数据组织结构

/var/lib/clickhouse/data/database/table/
├── 20240101_1_1_0/          # Part目录(分区_最小块_最大块_层级)
│   ├── checksums.txt        # 校验和
│   ├── columns.txt          # 列信息
│   ├── count.txt            # 行数
│   ├── primary.idx          # 主键索引
│   ├── [column].bin         # 列数据文件(压缩)
│   ├── [column].mrk2        # 标记文件(索引到数据的映射)
│   └── minmax_date.idx      # 分区键索引
├── 20240102_2_2_0/
└── detached/                # 分离的分区(备份、恢复)

Part 结构详解

  • primary.idx:稀疏索引,每8192行一个索引点
  • [column].bin:压缩后的列数据
  • [column].mrk2:标记文件,记录每个索引点在.bin文件中的偏移量
  • minmax_date.idx:分区键的最小最大值,用于分区裁剪

数据读取流程

sequenceDiagram
    participant Query as 查询
    participant Index as 主键索引
    participant Mark as 标记文件
    participant Data as 数据文件
    
    Query->>Index: 1. 查询主键范围
    Index->>Index: 2. 二分查找索引点
    Index->>Mark: 3. 获取数据偏移量
    Mark->>Data: 4. 定位数据块
    Data->>Data: 5. 解压缩数据
    Data->>Query: 6. 返回结果

6. 协调服务(ZooKeeper)

作用

  • 元数据管理:存储表结构、分片信息、副本状态
  • 分布式锁:协调数据合并、副本同步
  • Leader选举:选举主副本
  • 配置同步:同步集群配置

ZooKeeper 数据结构

/clickhouse/
├── tables/
│   ├── {cluster}/
│   │   ├── {database}/
│   │   │   ├── {table}/
│   │   │   │   ├── replicas/
│   │   │   │   │   ├── replica1/
│   │   │   │   │   │   ├── log          # 复制日志
│   │   │   │   │   │   ├── queue        # 任务队列
│   │   │   │   │   │   └── parts        # Part列表
│   │   │   │   │   └── replica2/
│   │   │   │   └── leader_election      # Leader选举
└── task_queue/                          # 全局任务队列

注意事项

  • ZooKeeper 不存储实际数据,只存储元数据
  • 建议部署3或5个ZooKeeper节点(奇数个)
  • ZooKeeper 故障不影响查询,但影响写入和副本同步

架构特点总结

优势

  • 无共享架构:节点独立,易于扩展
  • 线性扩展:增加节点即可提升性能
  • 高可用:支持副本复制,自动故障转移
  • 高性能:向量化执行、并行处理、列式存储
  • 灵活性:多种存储引擎,满足不同需求

局限性

  • 依赖ZooKeeper:需要额外部署和维护
  • 数据一致性:最终一致性,非强一致性
  • 跨分片JOIN:性能较差,建议避免
  • 小批量写入:频繁小批量写入会产生大量小Part

最佳实践

  • 单表数据量建议在 10亿-1000亿
  • 单个Part大小建议在 100MB-1GB
  • 分片数建议为 CPU核心数的倍数
  • 副本数建议为 2-3个
  • ZooKeeper 建议部署在 SSD磁盘

ClickHouse 核心特性

ClickHouse 之所以能在 OLAP 领域表现出卓越的性能,主要归功于其独特的核心特性和架构设计。

列式数据库管理系统

  • 存储方式:与传统的行式数据库(如 MySQL、PostgreSQL)不同,ClickHouse 将数据按列存储。每一列的数据被单独存储在不同的文件中。
  • 查询优势:在 OLAP 查询中,通常只需要访问表中的少数几列。列式存储使得 ClickHouse 只需读取必要的列数据,极大地减少了磁盘 I/O。
  • 数据紧凑:ClickHouse 不仅按列存储,而且数据在内存和磁盘中都是连续存储的,没有额外的元数据(如长度信息)伴随值存储,最大化了数据紧凑性。

高效的数据压缩

  • 高压缩比:由于同一列的数据类型相同,ClickHouse 可以应用非常高效的压缩算法。常见压缩比可达 10:1 甚至更高。
  • 多种算法:支持 LZ4、ZSTD 等通用压缩算法,以及 Delta、DoubleDelta、Gorilla 等针对特定数据类型(如时间序列、整数)的专用编码算法。
  • 性能收益:高压缩比不仅节省存储空间,更重要的是减少了从磁盘读取数据的时间,这在 I/O 往往是瓶颈的 OLAP 场景中至关重要。

向量化执行引擎

  • SIMD 指令:ClickHouse 利用 CPU 的 SIMD(Single Instruction, Multiple Data)指令集,能够通过单条指令同时处理多条数据。
  • 数据块处理:为了有效利用 CPU 缓存和 SIMD,ClickHouse 不按行处理数据,而是按列的一部分(Block)进行批量处理。
  • 减少开销:这种方式显著减少了函数调用次数和分支预测失败的概率,将 CPU 效率推向极致。

多核心并行处理

  • 单查询并行:ClickHouse 会利用服务器上所有可用的 CPU 核心来执行单个查询。这与许多只能用单核处理单个查询的传统数据库不同。
  • 块级并行:数据被划分为多个块,分配给不同的 CPU 线程并行处理,从而极大地缩短了大型查询的响应时间。

实时数据写入

  • LSM-Tree 架构:基于 MergeTree 引擎(类似 LSM-Tree 结构),支持每秒数百万行的高吞吐量写入。
  • 追加写入:数据以追加(Append-only)方式写入,避免了昂贵的随机磁盘 I/O。
  • 后台合并:系统在后台异步合并数据片段(Parts),并在合并过程中进行深度压缩和索引构建,确保写入性能不影响查询性能。

完善的 SQL 支持

  • 声明式语言:ClickHouse 使用一种基于 SQL 的声明式查询语言,与标准 SQL 高度兼容(支持 GROUP BY, ORDER BY, JOIN, IN 子查询, 窗口函数等)。
  • 丰富的功能:提供了大量的内置函数,包括用于处理数组、JSON、URL、IP 地址等复杂类型的函数,以及近似计算函数(如 uniq, quantile)。
  • 易用性:用户无需编写特定语言的代码(如 MapReduce),直接使用 SQL 即可进行复杂分析。

分布式与水平扩展

  • Shared-Nothing 架构:集群中没有单点故障,节点之间不共享存储或内存。
  • 线性扩展:可以通过增加服务器节点来线性提升计算能力和存储容量。
  • 自动分片与复制:支持自动的数据分片(Sharding)和副本复制(Replication),保证数据的高可用性和负载均衡。

分布式表查询流程

flowchart TD
    subgraph client["客户端"]
        A["SQL查询请求"]
    end
    
    subgraph coordinator["协调节点"]
        B["解析SQL"]
        C["查询计划生成"]
        D["分片路由确定"]
        E["查询分发"]
        J["结果合并"]
        K["返回最终结果"]
    end
    
    subgraph shards["数据分片节点"]
        subgraph shard1["分片1"]
            F1["执行本地查询"]
            G1["读取数据"]
            H1["本地处理"]
            I1["返回中间结果"]
        end
        
        subgraph shard2["分片2"]
            F2["执行本地查询"]
            G2["读取数据"]
            H2["本地处理"]
            I2["返回中间结果"]
        end
        
        subgraph shard3["分片3"]
            F3["执行本地查询"]
            G3["读取数据"]
            H3["本地处理"]
            I3["返回中间结果"]
        end
    end
    
    A --> B
    B --> C
    C --> D
    D --> E
    E --> F1
    E --> F2
    E --> F3
    F1 --> G1
    F2 --> G2
    F3 --> G3
    G1 --> H1
    G2 --> H2
    G3 --> H3
    H1 --> I1
    H2 --> I2
    H3 --> I3
    I1 --> J
    I2 --> J
    I3 --> J
    J --> K
    K --> A
    
    classDef client fill:#f9f,stroke:#333,stroke-width:1px
    classDef coordinator fill:#bbf,stroke:#333,stroke-width:1px
    classDef shard fill:#bfb,stroke:#333,stroke-width:1px
    
    class client client
    class B,C,D,E,J,K coordinator
    class shard1,shard2,shard3 shard

复杂分布式查询执行流程

flowchart TD
    subgraph complete_flow["完整分布式查询执行流程"]
        A["客户端发送SQL查询"] --> B["协调节点接收查询"]
        
        B --> C["SQL解析与验证"]
        C --> D["查询优化"]
        D --> E["分布式执行计划生成"]
        
        E --> F{"查询类型分析"}
        
        F -->|"简单查询"| G1["直接路由到分片"]
        F -->|"聚合查询"| G2["两阶段聚合计划"]
        F -->|"JOIN查询"| G3["分布式JOIN计划"]
        
        G1 --> H1["将查询发送到相关分片"]
        G2 --> H2["生成本地预聚合和全局聚合计划"]
        G3 --> H3["确定JOIN策略和执行顺序"]
        
        H1 --> I1["各分片执行查询"]
        H2 --> I2["各分片执行本地预聚合"]
        H3 --> I3["各分片执行JOIN操作"]
        
        I1 --> J1["收集原始结果"]
        I2 --> J2["收集预聚合结果"]
        I3 --> J3["收集JOIN结果"]
        
        J1 --> K1["简单合并结果"]
        J2 --> K2["执行全局聚合"]
        J3 --> K3["合并JOIN结果"]
        
        K1 --> L["应用LIMIT/OFFSET"]
        K2 --> L
        K3 --> L
        
        L --> M["格式化结果"]
        M --> N["返回结果给客户端"]
    end
    
    classDef client fill:#f9f,stroke:#333,stroke-width:1px
    classDef parse fill:#bbf,stroke:#333,stroke-width:1px
    classDef plan fill:#bfb,stroke:#333,stroke-width:1px
    classDef execute fill:#fbb,stroke:#333,stroke-width:1px
    classDef result fill:#ffe,stroke:#333,stroke-width:1px
    
    class A,B client
    class C,D parse
    class E,F,G1,G2,G3,H1,H2,H3 plan
    class I1,I2,I3,J1,J2,J3,K1,K2,K3 execute
    class L,M,N result

分布式查询执行步骤:

  1. 客户端发送SQL查询 - 客户端将SQL查询发送到集群中的一个节点(协调节点)
  2. 解析与计划 - 协调节点解析SQL并生成分布式查询执行计划
  3. 分片路由 - 根据表的分片键确定需要查询哪些分片
  4. 查询分发 - 协调节点将查询发送到相关分片节点
  5. 本地执行 - 各分片节点在本地执行查询,读取和处理数据
  6. 结果返回 - 各分片将中间结果返回给协调节点
  7. 结果合并 - 协调节点合并来自各分片的结果
  8. 结果返回 - 最终结果返回给客户端

ClickHouse 存储引擎

MergeTree 系列引擎

ClickHouse的MergeTree系列引擎是其核心存储引擎系列,专为OLAP场景设计,提供了高性能的数据存储、查询和维护功能。MergeTree系列包括多个变体,每个都针对特定的使用场景进行了优化。

MergeTree引擎基础

核心工作原理

MergeTree引擎采用LSM-Tree(Log-Structured Merge-Tree)数据结构,具有以下核心特点:

LSM-Tree (Log-Structured Merge-Tree) 详解

LSM-Tree是一种高效的写优化数据结构,特别适合写多读少的OLAP场景。ClickHouse的MergeTree引擎基于LSM-Tree设计,通过分层存储和后台合并机制,实现了高性能的数据写入和查询。

LSM-Tree核心原理

graph TD
    A["写入请求"] --> B["内存表(MemTable)"]
    B --> C{"内存表满?"}
    C -->|否| D["继续写入内存"]
    C -->|是| E["刷写到磁盘"]
    E --> F["L0层SSTable"]
    F --> G["后台合并进程"]
    G --> H["L1层SSTable"]
    H --> I["L2层SSTable"]
    I --> J["...更多层级"]
    
    K["读取请求"] --> L["查询内存表"]
    L --> M{"数据找到?"}
    M -->|是| N["返回结果"]
    M -->|否| O["查询L0层"]
    O --> P["查询L1层"]
    P --> Q["查询L2层"]
    Q --> R["合并结果返回"]
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style G fill:#fff3e0
    style K fill:#e8f5e8

LSM-Tree分层存储结构

层级特征数据量合并策略性能特点
MemTable内存中的有序表64MB-256MB写满后刷写到L0写入快,查询快
L0层磁盘上的不相交文件4-8个文件Size-Tiered合并可能有重叠键
L1层磁盘上的有序文件10倍L0大小Leveled合并无重叠键
L2层更大的有序文件10倍L1大小Leveled合并长期存储
L3+层冷数据存储指数级增长批量合并压缩率高

ClickHouse中的LSM-Tree实现

1. MergeTree的Part结构

-- 查看表的Parts结构
SELECT 
    table,
    partition,
    name,
    rows,
    bytes_on_disk,
    level,              -- LSM层级
    is_frozen,
    modification_time
FROM system.parts 
WHERE table = 'events' 
ORDER BY level, modification_time;

2. 合并策略配置

CREATE TABLE events_optimized (
    event_date Date,
    event_time DateTime,
    user_id UInt32,
    event_data String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id)
SETTINGS 
    -- LSM相关配置
    parts_to_delay_insert = 150,           -- 延迟插入的Part数量阈值
    parts_to_throw_insert = 300,           -- 拒绝插入的Part数量阈值
    max_parts_in_total = 1000,             -- 最大Part总数
    
    -- 合并策略配置
    merge_selecting_sleep_ms = 5000,       -- 合并选择间隔
    merge_max_block_size = 8192,           -- 合并块大小
    max_bytes_to_merge_at_max_space_in_pool = 1073741824, -- 最大合并字节数
    
    -- 压缩优化
    min_merge_bytes_to_use_direct_io = 10737418240, -- 直接IO阈值
    index_granularity = 8192;                       -- 索引粒度

3. 合并过程监控

-- 监控正在进行的合并操作
SELECT 
    table,
    elapsed,
    progress,
    num_parts,
    result_part_name,
    bytes_read_uncompressed,
    bytes_written_uncompressed,
    rows_read,
    rows_written
FROM system.merges;

-- 查看合并历史
SELECT 
    event_time,
    table,
    part_name,
    bytes_uncompressed,
    rows,
    duration_ms
FROM system.part_log 
WHERE event_type = 'MergeParts'
ORDER BY event_time DESC
LIMIT 10;

LSM-Tree性能优化策略

1. 写入优化

-- 批量写入配置
SET max_insert_block_size = 1048576;      -- 增大批量大小
SET max_insert_threads = 4;               -- 并行写入线程
SET max_partitions_per_insert_block = 100; -- 限制分区数

-- 异步写入优化
SET async_insert = 1;                     -- 启用异步插入
SET async_insert_max_data_size = 10485760; -- 异步缓冲区10MB
SET wait_for_async_insert = 0;            -- 不等待写入完成

2. 读取优化

-- 利用分区裁剪
SELECT count() FROM events 
WHERE event_date >= '2024-01-01' 
  AND event_date <= '2024-01-31';

-- 利用排序键优化范围查询
SELECT * FROM events 
WHERE event_date = '2024-01-15'
  AND user_id BETWEEN 1000 AND 2000
ORDER BY user_id, event_time;

3. 合并策略调优

-- 手动触发合并
OPTIMIZE TABLE events PARTITION '202401' FINAL;

-- 设置合并调度参数
SET background_pool_size = 16;            -- 后台任务线程数
SET background_merges_mutations_concurrency_ratio = 2;
SET max_bytes_to_merge_at_min_space_in_pool = 1048576;

LSM-Tree在ClickHouse中的优势

优势详细说明适用场景
高写入性能顺序写入,批量刷盘,减少随机IO实时数据采集、日志写入
高压缩率分层压缩,相似数据聚集历史数据存储、归档
范围查询优化数据有序存储,支持快速跳跃时序分析、区间统计
并发友好写入不阻塞读取,读取不阻塞写入混合负载场景
自动优化后台合并自动进行,无需人工干预运维简化

LSM-Tree最佳实践

1. 表设计原则

-- 好的设计:ORDER BY与查询模式匹配
CREATE TABLE user_events (
    user_id UInt32,
    event_date Date,
    event_time DateTime,
    event_type String,
    event_data String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)     -- 按月分区便于管理
ORDER BY (user_id, event_date, event_time) -- 用户维度查询优化
SETTINGS index_granularity = 8192;

2. 监控与告警

-- 监控Part数量,防止过多小文件
SELECT 
    table,
    count() as part_count,
    sum(rows) as total_rows,
    formatReadableSize(sum(bytes_on_disk)) as total_size
FROM system.parts 
WHERE active = 1
GROUP BY table
HAVING part_count > 100  -- 告警阈值
ORDER BY part_count DESC;

-- 监控写入延迟
SELECT 
    event_time,
    ProfileEvents['DelayedInserts'] as delayed_inserts,
    ProfileEvents['RejectedInserts'] as rejected_inserts
FROM system.metric_log 
WHERE event_time > now() - INTERVAL 1 HOUR
  AND (delayed_inserts > 0 OR rejected_inserts > 0);

1. 数据写入流程

graph LR
    A["数据写入"] --> B["内存缓冲"]
    B --> C["数据分区"] 
    C --> D["按ORDER BY排序"]
    D --> E["生成数据部分(Part)"]
    E --> F["后台合并"]
    F --> G["优化存储结构"]
    
    style A fill:#e1f5fe
    style E fill:#f3e5f5
    style F fill:#fff3e0
    style G fill:#e8f5e8

2. 分区管理

  • 数据按PARTITION BY表达式自动分区
  • 每个分区独立管理,支持单独操作
  • 分区内数据按ORDER BY字段排序存储

3. 稀疏索引

  • 每8192行(默认)生成一个索引条目
  • 基于ORDER BY字段构建稀疏索引
  • 支持快速范围查询和点查询

基本MergeTree表创建

-- 标准MergeTree表结构
CREATE TABLE events (
    event_date Date,                -- 分区键
    event_time DateTime,            -- 排序键
    user_id UInt32,                -- 排序键  
    event_type LowCardinality(String), -- 优化的字符串类型
    event_data String,
    properties Map(String, String), -- 键值对属性
    tags Array(String),            -- 标签数组
    created_at DateTime DEFAULT now() -- 默认值
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)   -- 按年月分区
ORDER BY (event_date, user_id, event_time) -- 排序键定义
PRIMARY KEY (event_date, user_id)   -- 主键(ORDER BY的前缀)
SETTINGS index_granularity = 8192, -- 索引粒度
         index_granularity_bytes = 10485760, -- 索引粒度字节数
         enable_mixed_granularity_parts = 1, -- 启用混合粒度
         merge_with_ttl_timeout = 86400;     -- TTL合并超时

MergeTree引擎关键特性详解

特性详细说明配置参数性能影响
分区管理按分区键将数据水平分割,每个分区独立存储PARTITION BY查询时仅扫描相关分区,显著提升性能
排序存储数据按ORDER BY字段物理排序存储ORDER BY范围查询和聚合操作性能优化
稀疏索引基于排序键的稀疏索引,支持快速数据定位index_granularity平衡内存使用和查询性能
数据压缩支持LZ4、ZSTD、Delta等多种压缩算法compression_codec节省存储空间,提高IO效率
后台合并自动合并小的数据部分,优化存储结构merge_*配置维持查询性能,控制文件数量
TTL支持数据生命周期管理,自动清理过期数据TTL表达式自动化数据管理,节省存储

MergeTree系列引擎变体

1. ReplacingMergeTree - 数据去重引擎

应用场景:需要对重复数据进行去重处理的场景,如用户画像更新、配置信息管理等。

-- ReplacingMergeTree基本用法
CREATE TABLE user_profiles (
    user_id UInt32,
    user_name String,
    email String,
    phone String,
    updated_at DateTime,
    version UInt64 DEFAULT 1  -- 版本号,用于确定最新记录
) ENGINE = ReplacingMergeTree(version) -- 指定版本字段
PARTITION BY intDiv(user_id, 1000000)  -- 按用户ID范围分区
ORDER BY user_id
SETTINGS index_granularity = 8192;

-- 数据插入示例(模拟用户信息更新)
INSERT INTO user_profiles VALUES
(1001, 'Alice', '[email protected]', '13800138001', now(), 1),
(1002, 'Bob', '[email protected]', '13800138002', now(), 1);

-- 更新用户信息(插入新版本)
INSERT INTO user_profiles VALUES
(1001, 'Alice Updated', '[email protected]', '13800138001', now(), 2);

-- 查询最新数据(使用FINAL确保去重)
SELECT user_id, user_name, email, updated_at
FROM user_profiles FINAL
WHERE user_id = 1001;

工作原理详解

  • 相同ORDER BY键的多行记录,保留版本字段值最大的记录
  • 去重操作在后台合并过程中执行,不是实时的
  • 查询时使用FINAL修饰符确保获得去重后的结果

2. SummingMergeTree - 自动聚合引擎

应用场景:需要对数值字段进行预聚合的场景,如指标统计、计数器累加等。

-- SummingMergeTree预聚合表
CREATE TABLE user_metrics (
    date Date,
    user_id UInt32,
    event_type String,
    event_count UInt64,           -- 会自动求和的字段
    duration_seconds UInt64,      -- 会自动求和的字段
    unique_sessions UInt32        -- 会自动求和的字段
) ENGINE = SummingMergeTree((event_count, duration_seconds, unique_sessions))
PARTITION BY toYYYYMM(date)
ORDER BY (date, user_id, event_type)
SETTINGS index_granularity = 8192;

-- 插入原始数据
INSERT INTO user_metrics VALUES
('2024-01-01', 1001, 'click', 10, 300, 2),
('2024-01-01', 1001, 'click', 5, 150, 1);  -- 相同键的记录

-- 强制合并以触发聚合
OPTIMIZE TABLE user_metrics FINAL;

-- 查询聚合结果
SELECT 
    date, user_id, event_type,
    sum(event_count) as total_events,
    sum(duration_seconds) as total_duration,
    sum(unique_sessions) as total_sessions
FROM user_metrics
WHERE date = '2024-01-01' AND user_id = 1001
GROUP BY date, user_id, event_type;

-- 使用物化视图自动聚合
CREATE MATERIALIZED VIEW user_metrics_mv
TO user_metrics
AS SELECT 
    toDate(event_time) as date,
    user_id,
    event_type,
    count() as event_count,
    sum(duration) as duration_seconds,
    uniq(session_id) as unique_sessions
FROM raw_events
GROUP BY date, user_id, event_type;

1. AggregatingMergeTree - 复杂聚合引擎

应用场景:需要使用复杂聚合函数的场景,如去重计数、分位数计算、复合统计等。

-- AggregatingMergeTree复杂聚合表
CREATE TABLE user_analytics (
    date Date,
    site_id UInt32,
    user_count AggregateFunction(uniq, UInt32),     -- 去重用户数
    page_views AggregateFunction(count, UInt32),    -- 页面浏览量
    session_duration AggregateFunction(avg, UInt32), -- 平均会话时长
    bounce_rate AggregateFunction(quantile(0.5), Float32) -- 跳出率中位数
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, site_id)
SETTINGS index_granularity = 8192;

-- 使用AggregateFunction需要特殊的插入语法
INSERT INTO user_analytics 
SELECT 
    toDate(event_time) as date,
    site_id,
    uniqState(user_id) as user_count,
    countState(*) as page_views,
    avgState(session_duration) as session_duration,
    quantileState(0.5)(bounce_rate) as bounce_rate
FROM raw_page_views
WHERE toDate(event_time) = today()
GROUP BY date, site_id;

-- 查询聚合结果
SELECT 
    date,
    site_id,
    uniqMerge(user_count) as unique_users,
    countMerge(page_views) as total_page_views,
    avgMerge(session_duration) as avg_session_duration,
    quantileMerge(0.5)(bounce_rate) as median_bounce_rate
FROM user_analytics
WHERE date >= today() - 7
GROUP BY date, site_id
ORDER BY date, site_id;

1. CollapsingMergeTree - 数据变更引擎

应用场景:需要追踪数据变更历史、实现更新和删除语义的场景。

-- CollapsingMergeTree变更日志表
CREATE TABLE user_balance_log (
    user_id UInt32,
    balance Decimal(18, 2),
    transaction_id String,
    transaction_time DateTime,
    sign Int8  -- 1表示插入/更新,-1表示删除/撤销
) ENGINE = CollapsingMergeTree(sign)
PARTITION BY toYYYYMM(transaction_time)
ORDER BY (user_id, transaction_id, sign)
SETTINGS index_granularity = 8192;

-- 插入初始记录
INSERT INTO user_balance_log VALUES
(1001, 1000.00, 'tx_001', '2024-01-01 10:00:00', 1);

-- 更新记录(先插入取消记录,再插入新记录)
INSERT INTO user_balance_log VALUES
(1001, 1000.00, 'tx_001', '2024-01-01 10:00:00', -1), -- 取消原记录
(1001, 1500.00, 'tx_002', '2024-01-01 11:00:00', 1);  -- 插入新记录

-- 查询当前有效记录
SELECT 
    user_id,
    sum(balance * sign) as current_balance,
    max(transaction_time) as last_update
FROM user_balance_log
WHERE user_id = 1001
GROUP BY user_id
HAVING sum(sign) > 0; -- 只显示有效记录

1. VersionedCollapsingMergeTree - 版本化变更引擎

应用场景:需要版本控制的数据变更场景,解决CollapsingMergeTree的并发问题。

-- VersionedCollapsingMergeTree版本化表
CREATE TABLE user_status_history (
    user_id UInt32,
    status String,
    level UInt32,
    last_login DateTime,
    version UInt64,  -- 版本号
    sign Int8        -- 变更标记
) ENGINE = VersionedCollapsingMergeTree(sign, version)
PARTITION BY intDiv(user_id, 100000)
ORDER BY (user_id, version, sign)
SETTINGS index_granularity = 8192;

-- 版本化数据更新流程
-- 1. 插入初始版本
INSERT INTO user_status_history VALUES
(1001, 'active', 1, '2024-01-01 10:00:00', 1, 1);

-- 2. 更新用户状态(版本2)
INSERT INTO user_status_history VALUES
(1001, 'active', 1, '2024-01-01 10:00:00', 1, -1), -- 撤销版本1
(1001, 'premium', 2, '2024-01-01 12:00:00', 2, 1); -- 插入版本2

-- 3. 查询最新状态
SELECT 
    user_id, status, level, last_login
FROM user_status_history FINAL
WHERE user_id = 1001;

1. GraphiteMergeTree - 时序数据引擎

应用场景:专门用于存储Graphite格式的时序监控数据。

-- GraphiteMergeTree监控数据表
CREATE TABLE metrics_data (
    metric_name String,
    value Float64,
    timestamp UInt32,
    date Date,
    updated UInt32
) ENGINE = GraphiteMergeTree('graphite_rollup')
PARTITION BY toYYYYMM(date)
ORDER BY (metric_name, timestamp)
SETTINGS index_granularity = 8192;

-- Graphite数据汇总配置(在config.xml中配置)
-- <graphite_rollup>
--     <pattern>
--         <regexp>click_cost</regexp>
--         <function>sum</function>
--         <retention>
--             <age>0</age>
--             <precision>60</precision>
--         </retention>
--     </pattern>
-- </graphite_rollup>

MergeTree引擎高级配置

1. 索引和投影优化

-- 添加跳表索引
ALTER TABLE events ADD INDEX idx_event_type event_type TYPE bloom_filter(0.01) GRANULARITY 1;
ALTER TABLE events ADD INDEX idx_user_range user_id TYPE minmax GRANULARITY 1;

-- 添加投影索引(预聚合)
ALTER TABLE events ADD PROJECTION user_daily_stats (
    SELECT 
        user_id,
        toDate(event_time) as date,
        event_type,
        count() as event_count,
        uniq(session_id) as session_count
    GROUP BY user_id, date, event_type
);

-- 物化投影(立即构建)
ALTER TABLE events MATERIALIZE PROJECTION user_daily_stats;

1. TTL和数据生命周期管理

-- 复合TTL策略
CREATE TABLE events_with_lifecycle (
    event_date Date,
    event_time DateTime,
    user_id UInt32,
    event_type String,
    event_data String,
    sensitive_info Nullable(String)
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id, event_time)
TTL 
    -- 列级TTL:30天后删除敏感信息
    sensitive_info + INTERVAL 30 DAY,
    -- 表级TTL:数据分层存储和删除策略
    event_date + INTERVAL 7 DAY TO DISK 'hot',      -- 7天内热存储
    event_date + INTERVAL 30 DAY TO DISK 'cold',    -- 30天内冷存储  
    event_date + INTERVAL 365 DAY DELETE,           -- 365天后删除
    -- 聚合TTL:90天后数据聚合
    event_date + INTERVAL 90 DAY GROUP BY user_id, event_type SET
        event_count = count(),
        last_event_time = max(event_time),
        event_data = any(event_data);

3. 存储策略和多磁盘配置

-- 存储策略配置
CREATE TABLE events_multi_disk (
    event_date Date,
    event_time DateTime,
    user_id UInt32,
    event_data String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id)
SETTINGS 
    storage_policy = 'tiered_storage',  -- 使用分层存储策略
    min_bytes_for_wide_part = 0,        -- 所有分区使用Wide格式
    min_rows_for_wide_part = 0;

-- 在config.xml中配置存储策略
-- <storage_configuration>
--     <disks>
--         <hot_disk>
--             <path>/mnt/fast_ssd/clickhouse/</path>
--         </hot_disk>
--         <cold_disk>
--             <path>/mnt/slow_hdd/clickhouse/</path>
--         </cold_disk>
--     </disks>
--     <policies>
--         <tiered_storage>
--             <volumes>
--                 <hot>
--                     <disk>hot_disk</disk>
--                     <max_data_part_size_bytes>1073741824</max_data_part_size_bytes>
--                 </hot>
--                 <cold>
--                     <disk>cold_disk</disk>
--                 </cold>
--             </volumes>
--         </tiered_storage>
--     </policies>
-- </storage_configuration>

引擎选择策略与最佳实践

引擎选择决策树

graph TD
    A["选择MergeTree系列引擎"] --> B{"是否需要去重?"}
    B -->|是| C{"去重逻辑复杂度"}
    B -->|否| D{"是否需要预聚合?"}
    
    C -->|简单| E["ReplacingMergeTree"]
    C -->|复杂/版本化| F["VersionedCollapsingMergeTree"]
    
    D -->|是| G{"聚合函数复杂度"}
    D -->|否| H{"是否需要变更追踪?"}
    
    G -->|简单求和| I["SummingMergeTree"]
    G -->|复杂聚合| J["AggregatingMergeTree"]
    
    H -->|是| K["CollapsingMergeTree"]
    H -->|否| L["MergeTree"]
    
    style E fill:#e1f5fe
    style F fill:#e1f5fe  
    style I fill:#f3e5f5
    style J fill:#f3e5f5
    style K fill:#fff3e0
    style L fill:#e8f5e8

性能优化最佳实践

1. ORDER BY设计原则

-- 好的设计:高频查询字段在前
ORDER BY (user_id, event_date, event_time)  -- 用户维度查询优化

-- 不好的设计:时间字段在前,用户查询低效  
ORDER BY (event_time, user_id, event_date)

2. 分区策略选择

-- 推荐:按时间分区(便于管理和删除)
PARTITION BY toYYYYMM(event_date)

-- 适用:按业务维度分区(数据倾斜较少时)
PARTITION BY (toYYYYMM(event_date), city_id)

-- 避免:过细分区(导致大量小文件)
PARTITION BY (event_date, user_id)  -- 不推荐

3. 写入优化设置

-- 批量写入优化配置
SET max_insert_block_size = 1048576;          -- 1M行批处理
SET max_insert_threads = 4;                   -- 4线程并行插入
SET max_partitions_per_insert_block = 100;    -- 限制单次插入分区数

-- 异步写入优化
SET async_insert = 1;                         -- 启用异步插入
SET wait_for_async_insert = 0;                -- 不等待插入完成
SET async_insert_max_data_size = 1000000;     -- 异步缓冲区大小

Log 系列引擎

Log系列引擎 适用于小表、临时表或日志数据。

-- TinyLog引擎(最简单)
CREATE TABLE tiny_log (
    timestamp DateTime,
    message String
) ENGINE = TinyLog;

-- StripeLog引擎(支持并行读取)
CREATE TABLE stripe_log (
    timestamp DateTime,
    message String
) ENGINE = StripeLog;

-- Log引擎(支持索引)
CREATE TABLE log_table (
    timestamp DateTime,
    level String,
    message String
) ENGINE = Log;

集成引擎

集成引擎用于连接外部数据源。

-- MySQL引擎
CREATE TABLE mysql_table (
    id UInt32,
    name String
) ENGINE = MySQL('mysql_host:3306', 'database', 'table', 'user', 'password');

-- HDFS引擎
CREATE TABLE hdfs_table (
    id UInt32,
    data String
) ENGINE = HDFS('hdfs://namenode:9000/path/to/file', 'Parquet');

-- Kafka引擎
CREATE TABLE kafka_table (
    timestamp DateTime,
    message String
) ENGINE = Kafka('kafka_host:9092', 'topic', 'group_id', 'JSONEachRow');

引擎选择策略

使用场景推荐引擎原因
大数据分析MergeTree支持分区、索引、压缩
实时写入MergeTree高性能写入,后台合并
数据去重ReplacingMergeTree自动去重,保留最新版本
会话数据CollapsingMergeTree支持数据折叠,节省空间
临时数据Log系列简单高效,适合小表
外部数据集成引擎直接访问外部数据源

ClickHouse 数据类型

基础数据类型

整数类型

-- 有符号整数
Int8, Int16, Int32, Int64, Int128, Int256

-- 无符号整数
UInt8, UInt16, UInt32, UInt64, UInt128, UInt256

-- 示例
CREATE TABLE integers (
    id UInt32,
    count Int64,
    flag UInt8
);

浮点类型

-- 浮点数
Float32, Float64

-- 示例
CREATE TABLE floats (
    price Float32,
    ratio Float64
);

字符串类型

-- 字符串
String, FixedString(N)

-- 示例
CREATE TABLE strings (
    name String,
    code FixedString(10)
);

日期时间类型

-- 日期时间
Date, DateTime, DateTime64

-- 示例
CREATE TABLE dates (
    event_date Date,
    event_time DateTime,
    precise_time DateTime64(3)
);

复合数据类型(tuple)

数组类型

-- 数组
Array(T)

-- 示例
CREATE TABLE arrays (
    tags Array(String),
    scores Array(Float32),
    ids Array(UInt32)
);

元组类型

-- 元组
Tuple(T1, T2, ...)

-- 示例
CREATE TABLE tuples (
    point Tuple(Float32, Float32),
    user_info Tuple(String, UInt32, DateTime)
);
-- 根据索引获取元素,第一位索引是1
select (1,2,3).2;
   ┌─tupleElement((1, 2, 3), 2)─┐
1.                           2 
   └────────────────────────────┘

Map类型

-- Map
Map(KeyType, ValueType)

-- 示例
CREATE TABLE maps (
    user_attributes Map(String, String),
    metrics Map(String, Float64)
);

特殊数据类型

Nullable类型

-- 可空类型
Nullable(T)

-- 示例
CREATE TABLE nullable_data (
    id UInt32,
    name Nullable(String),
    age Nullable(UInt8)
);

LowCardinality类型

-- 低基数类型(优化存储)
LowCardinality(T)

-- 示例
CREATE TABLE low_cardinality (
    country LowCardinality(String),
    status LowCardinality(String)
);

Decimal类型

-- 高精度小数
Decimal(P, S)

-- 示例
CREATE TABLE decimals (
    amount Decimal(18, 2),
    rate Decimal(10, 4)
);

数据操作

查询数据

命令行查询 高频参数表格

参数描述示例
--host指定ClickHouse服务器主机名或IP地址--host 192.168.1.100
--port指定ClickHouse服务器端口号--port 9000
--user指定连接用户名--user default
--password指定连接密码--password 'secret'
--database指定要使用的数据库--database analytics
--query / -q执行单条SQL查询并退出-q "SELECT version()"
--format指定输出格式--format Pretty
--multiline / -m启用多行模式(不需要分号结束)-m
--time显示查询执行时间--time
--max_memory_usage设置单个查询的最大内存使用量--max_memory_usage 20000000000
--max_threads设置查询处理的最大线程数--max_threads 4
--max_insert_block_size设置插入数据的块大小--max_insert_block_size 1000000
--max_insert_threads设置插入操作的线程数--max_insert_threads 4
--config-file指定配置文件路径--config-file /etc/clickhouse-client/config.xml
--secure使用SSL加密连接--secure
--compression启用或禁用网络压缩--compression 1
--queries-file从文件执行查询--queries-file queries.sql
--history_file指定命令历史文件--history_file ~/.clickhouse-client-history
--verbose显示详细信息--verbose

基本连接与查询

# 指定数据库连接
clickhouse-client --host 192.168.1.100 --port 9000 --user admin --password 'secret' --database analytics

查询输出格式控制

参数描述
Pretty默认
CSVWithNamesCSV格式(带表头)
JSONJSON格式
JSONEachRowJSONEachRow格式(每行一个JSON对象)
TSVTSV格式
Vertical垂直格式(适合宽表)
PrettyCompact紧凑格式
# 表格格式(默认)
clickhouse-client -q "SELECT name, engine FROM system.tables LIMIT 5" --format Pretty

文件查询操作

 SELECT count()  FROM remote('qa-hadoop1:9000', alibb.part1) limit 3;

# 从文件执行SQL
clickhouse-client --queries-file queries.sql

# 从标准输入执行
echo "SELECT 1" | clickhouse-client

# 执行复杂查询文件
cat << 'EOF' > complex_query.sql
WITH user_stats AS (
    SELECT 
        user_id,
        COUNT(*) as event_count,
        MAX(timestamp) as last_activity
    FROM user_events 
    WHERE date >= today() - 7
    GROUP BY user_id
)
SELECT 
    user_id,
    event_count,
    last_activity,
    CASE 
        WHEN event_count > 100 THEN 'high_activity'
        WHEN event_count > 10 THEN 'medium_activity'
        ELSE 'low_activity'
    END as activity_level
FROM user_stats
ORDER BY event_count DESC
LIMIT 100;
EOF

clickhouse-client --queries-file complex_query.sql --format Pretty

参数化查询

# 使用参数化查询
clickhouse-client --param_user_id=12345 --param_start_date='2024-01-01' \
  --query "SELECT * FROM user_events WHERE user_id = {user_id:UInt64} AND date >= {start_date:Date}"

# 多参数查询
clickhouse-client \
  --param_min_amount=100 \
  --param_max_amount=1000 \
  --param_currency='USD' \
  --query "
    SELECT 
        transaction_id,
        amount,
        currency,
        timestamp
    FROM transactions 
    WHERE amount BETWEEN {min_amount:Float64} AND {max_amount:Float64}
      AND currency = {currency:String}
    ORDER BY timestamp DESC
    LIMIT 50
  " --format JSONEachRow

批量数据查询

# 大数据量查询优化
clickhouse-client --max_memory_usage=8000000000 \
  --query "SELECT * FROM huge_table WHERE date >= '2024-01-01'" \
  --format CSVWithNames > large_export.csv

# 分页查询
clickhouse-client --query "
  SELECT * FROM user_events 
  ORDER BY timestamp DESC 
  LIMIT 1000 OFFSET 0
" --format JSONEachRow

# 流式查询(避免内存溢出)
clickhouse-client --query "
  SELECT * FROM user_events 
  WHERE date >= today() - 30
" --format JSONEachRow --stream

# 并行查询多个分区
for partition in {20240101..20240131}; do
  clickhouse-client --query "
    SELECT * FROM user_events 
    WHERE toYYYYMMDD(date) = $partition
  " --format CSVWithNames > "data_$partition.csv" &
done
wait

插入数据

-- 基本插入
INSERT INTO table_name (column1, column2) VALUES (value1, value2);

-- 从HDFS插入数据
INSERT INTO glab_gid_info.appinfo_v2 
SELECT * FROM hdfs('hdfs://path/to/file', 'Parquet');

-- 使用命令行工具插入
clickhouse-client -m --port 9000 --user default --database glab_gid_info --password xxxxx \
 --host hzxs-ga-ck-xs6 --max_insert_block_size=536970912 --max_insert_threads=4 \
 -q 'INSERT INTO table_name SELECT * FROM hdfs("hdfs://xxx:8020/path/to/file", "Parquet");'

导出数据

命令行 client 导出

# 基础:格式控制(CSV/TSV/JSON/Parquet/ORC 等)
clickhouse-client \
  --host <host> --port 9000 --user <user> --password <pwd> \
  --query "SELECT * FROM db.table WHERE date>=toDate('2025-01-01') FORMAT CSV" \
  > export.csv

# 带表头(CSVWithNames/TSVWithNames)
clickhouse-client -q "SELECT * FROM db.table FORMAT CSVWithNames" > table.csv

# 导出为 JSONEachRow(便于流式处理)
clickhouse-client -q "SELECT * FROM db.table FORMAT JSONEachRow" > table.jsonl

# 并行压缩导出(压缩到本地)
clickhouse-client -q "SELECT * FROM db.table FORMAT CSV" | gzip > table.csv.gz

SELECT INTO OUTFILE(需配置 allow_into_outfile=1)

SET allow_into_outfile = 1;
SELECT * FROM db.table
INTO OUTFILE '/tmp/table.csv'
FORMAT CSVWithNames;

表函数导出

-- 导出到 HDFS ,无需提前创建文件,先创建目录
INSERT INTO FUNCTION hdfs('hdfs://gt-ga-xs/tmp/logs/data/huangg/id_2_wifi/20250917/aaa.parquet', 'Parquet')
select * from glab_relation.id_2_wifi_predict_local limit 1;

-- 使用 file()/hdfs()/s3() 表函数(INSERT/SELECT 互转)
INSERT INTO FUNCTION file('/tmp/export.jsonl', 'JSONEachRow')
SELECT * FROM db.table WHERE dt=toDate('2025-01-01');

INSERT INTO FUNCTION hdfs('hdfs://nn:8020/path/table.parquet', 'Parquet')
SELECT * FROM db.table;

JSON 数据写入与解析

-- 从原始 JSON 字符串中提取字段
SELECT 
    event_time,
    JSONExtractString(properties, 'page') AS page,
    JSONExtractString(properties, 'ua') AS ua,
    JSONExtractFloat(properties, 'amount') AS amount
FROM events_json
WHERE event_date = toDate('2025-08-01');

-- 使用更通用的 JSON_VALUE(JSON, jsonpath) 语法(新版本)
SELECT 
    event_time,
    JSON_VALUE(properties, '$.page') AS page,
    JSON_VALUE(properties, '$.order_id') AS order_id,
    toFloat64OrNull(JSON_VALUE(properties, '$.amount')) AS amount
FROM events_json
WHERE event_type IN ('page_view', 'purchase');

-- Map 列的读取
SELECT 
    event_time,
    props['btn'] AS btn,
    props['q'] AS query,
    mapKeys(props) AS all_keys
FROM events_map
WHERE event_type IN ('click','search');

-- Object('json') 的投影访问(字段自动按需映射并可被索引/投影)
SELECT 
    event_time,
    j.page AS page,
    j.sku::UInt64 AS sku,
    j.price::Float64 AS price
FROM events_obj
WHERE j.page = '/detail';

Bitmap操作

基本操作

-- 创建bitmap
SELECT bitmapBuild([1, 2, 3, 4, 5]) AS bitmap;

-- 添加元素
SELECT bitmapAdd(bitmapBuild([1,2,3]), 4) AS bitmap;

-- 删除元素
SELECT bitmapSubtract(bitmapBuild([1,2,3]), 2) AS bitmap;

-- 判断元素是否存在
SELECT bitmapContains(bitmapBuild([1,2,3]), 2) AS exists;

-- 获取基数(元素个数)
SELECT bitmapCardinality(bitmap_column) FROM table;

聚合操作

-- OR操作(并集)
SELECT 
    bitmapOr(bitmap1, bitmap2) AS union_bitmap,
    bitmapOrCardinality(bitmap1, bitmap2) AS union_count
FROM table;

-- AND操作(交集)
SELECT 
    bitmapAnd(bitmap1, bitmap2) AS intersect_bitmap,
    bitmapAndCardinality(bitmap1, bitmap2) AS intersect_count
FROM table;

-- XOR操作(异或)
SELECT 
    bitmapXor(bitmap1, bitmap2) AS xor_bitmap,
    bitmapXorCardinality(bitmap1, bitmap2) AS xor_count
FROM table;

-- 聚合OR操作
SELECT bitmapOrState(bitmap_column)
FROM table
GROUP BY group_column;

-- 聚合AND操作
SELECT bitmapAndState(bitmap_column)
FROM table
GROUP BY group_column;

转换操作

-- Bitmap转数组
SELECT bitmapToArray(bitmap_column) AS array;

-- 数组转Bitmap
SELECT bitmapBuild([1, 2, 3]) AS bitmap;

-- 获取Bitmap中的指定范围元素
SELECT arraySlice(bitmapToArray(bitmap_column), 1, 5) AS first_five;

-- 实际应用示例
SELECT 
    tag,
    bitmapCardinality(gid_index_bitmap) AS user_count,
    arraySlice(bitmapToArray(gid_index_bitmap), 1, 10) AS sample_users
FROM tag_bitmap 
WHERE tag_md5 = lower(hex(MD5('tag_name')));

-- Bitmap分段统计示例
SELECT 
    bitmap_segment_number,
    bitmapCardinality(gid_index_bitmap) AS segment_count,
    formatReadableSize(length(gid_index_bitmap)) AS bitmap_size
FROM tag_bitmap 
WHERE tag_md5 = lower(hex(MD5('tag_name')))
ORDER BY bitmap_segment_number;

性能优化

-- 使用 bitmapOrCardinality 替代 bitmapCardinality(bitmapOr())
SELECT bitmapOrCardinality(
    bitmapBuild([1, 2, 3]),
    bitmapBuild([3, 4, 5])
) AS union_count;

-- 批量处理时使用State聚合函数
SELECT 
    tag,
    bitmapCardinality(groupBitmapOrState(gid_index_bitmap)) AS total_users
FROM tag_bitmap
WHERE tag IN ('tag1', 'tag2', 'tag3')
GROUP BY tag;

-- 大规模数据处理优化
SELECT 
    tag,
    bitmapCardinality(gid_index_bitmap) AS user_count,
    formatReadableSize(length(gid_index_bitmap)) AS bitmap_size
FROM tag_bitmap 
WHERE tag_md5 IN (
    SELECT lower(hex(MD5(tag))) 
    FROM (SELECT ['tag1', 'tag2', 'tag3'] AS tags) 
    ARRAY JOIN tags AS tag
)
SETTINGS max_threads = 4;

Map操作

# Map创建与转换
-- 创建Map
SELECT map('key1', 1, 'key2', 2) AS simple_map;

-- 从两个数组创建Map
SELECT mapFromArrays(['key1', 'key2', 'key3'], [1, 2, 3]) AS map_from_arrays;

-- 从嵌套数组创建Map
SELECT mapFromArrays(['a', 'b'], [[1, 2], [3, 4]]) AS nested_map;

-- 数组转换为Map (key-value对的数组)
SELECT arrayMap(x -> (x, x * x), range(1, 5)) AS array_of_pairs,
       map(arrayMap(x -> (x, x * x), range(1, 5))) AS map_from_pairs;

-- 从JSON字符串创建Map
SELECT mapFromJSON('{"key1": 1, "key2": 2, "key3": 3}') AS map_from_json;

-- Map转换为JSON
SELECT mapToJSON(map('key1', 1, 'key2', 2)) AS json_string;

-- Map转换为两个数组
SELECT mapKeys(map('key1', 1, 'key2', 2)) AS keys,
       mapValues(map('key1', 1, 'key2', 2)) AS values;


# Map查询与操作

-- 获取Map中的值
SELECT map('key1', 1, 'key2', 2)['key1'] AS value;

-- 检查键是否存在
SELECT mapContains(map('key1', 1, 'key2', 2), 'key1') AS contains_key;

-- 获取Map大小
SELECT mapSize(map('key1', 1, 'key2', 2)) AS map_size;

-- 合并两个Map
SELECT mapMerge(
    map('key1', 1, 'key2', 2),
    map('key2', 20, 'key3', 3)
) AS merged_map;

-- 删除Map中的键
SELECT mapRemove(map('key1', 1, 'key2', 2, 'key3', 3), ['key1', 'key3']) AS filtered_map;

-- 提取Map子集
SELECT mapFilter((k, v) -> v > 1, map('key1', 1, 'key2', 2, 'key3', 3)) AS filtered_map;

-- 转换Map值
SELECT mapApply((k, v) -> v * 10, map('key1', 1, 'key2', 2)) AS transformed_map;

-- 展平嵌套Map
SELECT mapFlat(map('nested', map('key1', 1, 'key2', 2), 'key3', 3)) AS flattened_map;


# Map聚合操作

-- 聚合多行数据为单个Map
SELECT mapAgg(key, value) FROM (
    SELECT 'key1' AS key, 1 AS value
    UNION ALL SELECT 'key2' AS key, 2 AS value
    UNION ALL SELECT 'key3' AS key, 3 AS value
);

-- 合并多行Map
SELECT groupArrayMap(m) FROM (
    SELECT map('key1', 1, 'key2', 2) AS m
    UNION ALL SELECT map('key2', 20, 'key3', 3) AS m
    UNION ALL SELECT map('key4', 4) AS m
);

-- 聚合Map并对值进行求和
SELECT 
    date,
    sumMap(page_views) AS total_views
FROM (
    SELECT 
        toDate('2023-01-01') AS date,
        map('page1', 10, 'page2', 15) AS page_views
    UNION ALL
    SELECT 
        toDate('2023-01-01') AS date,
        map('page1', 5, 'page3', 8) AS page_views
)
GROUP BY date;

-- 实际应用示例:用户属性聚合
SELECT 
    user_id,
    mapAgg(attribute, value) AS user_attributes
FROM user_attribute_table
GROUP BY user_id;

-- 实际应用示例:事件计数聚合
SELECT 
    date,
    sumMap(event_counts) AS daily_events
FROM (
    SELECT 
        event_date AS date,
        map(event_type, event_count) AS event_counts
    FROM events_table
)
GROUP BY date
ORDER BY date;

数组操作

数组基础操作

数组创建与类型转换

-- 1. 数组字面量创建
SELECT [1, 2, 3, 4, 5] AS simple_array;
SELECT ['apple', 'banana', 'orange'] AS string_array;
SELECT [toDate('2024-01-01'), toDate('2024-01-02')] AS date_array;

-- 2. 从列创建数组
SELECT range(10) AS number_range;              -- [0,1,2,3,4,5,6,7,8,9]
SELECT range(1, 6) AS custom_range;            -- [1,2,3,4,5]
SELECT range(0, 10, 2) AS step_range;          -- [0,2,4,6,8]

-- 3. 空数组和类型指定
SELECT [] AS empty_array;
SELECT CAST([] AS Array(String)) AS typed_empty_array;
SELECT emptyArrayUInt32() AS empty_uint_array;
SELECT emptyArrayString() AS empty_string_array;

-- 4. 数组类型转换
SELECT arrayMap(x -> toString(x), [1, 2, 3]) AS to_string_array;
SELECT arrayMap(x -> toFloat64(x), ['1.1', '2.2', '3.3']) AS to_float_array;
SELECT arrayMap(x -> toDate(x), ['2024-01-01', '2024-01-02']) AS to_date_array;

-- 5. 从字符串解析数组
SELECT splitByChar(',', '1,2,3,4') AS from_string;
SELECT arrayMap(x -> toInt32(x), splitByChar(',', '10,20,30')) AS parsed_int_array;

数组集合操作

-- 数组并集:合并两个数组并去重
SELECT arrayDistinct(arrayConcat([1, 2, 3], [2, 3, 4])) AS union_array;
-- 结果: [1, 2, 3, 4]

-- 组合求差集
select arrayFilter(x->not arrayExists(y -> y = x,[1,2,4]),[2,3,5]) as diff;
-- 结果: [3,5]

-- 对多个数组执行交集操作
SELECT arrayIntersect([1, 2, 3], [2, 3, 4], [3, 4, 5]) AS multi_intersection;
-- 结果: [3]

-- 检查一个数组是否是另一个数组的子集
SELECT arrayAll(x -> arrayExists(y -> y = x, [1, 2, 3, 4]), [2, 3]) AS is_subset;
-- 结果: 1 (true)

-- 检查两个数组是否相等(不考虑顺序)
SELECT arraySort(a1) = arraySort(a2) FROM 
(SELECT [1, 2, 3] AS a1, [3, 1, 2] AS a2);
-- 结果: 1 (true)

-- 检查一个元素是否在数组中
SELECT arrayExists(x -> x = 3, [1, 2, 3, 4]) AS contains;
-- 结果: 1 (true)

-- 高效并集实现(去重合并)
SELECT arrayDistinct(arrayConcat([1, 2, 3], [3, 4, 5])) AS union_result;  -- [1, 2, 3, 4, 5]

-- 多数组并集(支持任意数量的数组)
SELECT arrayDistinct(arrayFlatten([
    [1, 2, 3],
    [3, 4, 5], 
    [5, 6, 7],
    [7, 8, 9]
])) AS multi_array_union; -- [1, 2, 3, 4, 5, 6, 7, 8, 9]

-- 条件并集(仅合并满足条件的元素)
WITH 
    arrayFilter(x -> x > 0, [-1, 1, -2, 2, 3]) AS positive_arr1,
    arrayFilter(x -> x > 0, [-2, 2, -3, 3, 4]) AS positive_arr2
SELECT arrayDistinct(arrayConcat(positive_arr1, positive_arr2)) AS positive_union; -- [1, 2, 3, 4]

-- 加权并集(保留权重信息)
SELECT arrayDistinct(arrayConcat(
    arrayMap(x -> (x, 'source_A'), [1, 2, 3]),
    arrayMap(x -> (x, 'source_B'), [3, 4, 5])
)) AS weighted_union;

-- 分组并集聚合
SELECT 
    group_id,
    arrayDistinct(arrayFlatten(groupArray(elements))) AS group_union
FROM (
    SELECT 1 AS group_id, [1, 2, 3] AS elements
    UNION ALL SELECT 1, [3, 4, 5]
    UNION ALL SELECT 2, [6, 7, 8]
    UNION ALL SELECT 2, [8, 9, 10]
)
GROUP BY group_id;

-- 基本arrayJoin用法:将数组展开为多行
SELECT arrayJoin([1, 2, 3]) AS value;
-- 结果:
-- 1
-- 2  
-- 3
-- 数组去重
SELECT arrayDistinct([1, 2, 2, 3, 3, 4]) AS unique_array;
-- 结果: [1, 2, 3, 4]

-- 数组合并
SELECT arrayConcat([1, 2], [3, 4], [5, 6]) AS merged_array;
-- 结果: [1, 2, 3, 4, 5, 6]

-- 数组映射转换
SELECT arrayMap(x -> x * 2, [1, 2, 3, 4, 5]) AS doubled;
-- 结果: [2, 4, 6, 8, 10]

-- 数组过滤
SELECT arrayFilter(x -> x > 3, [1, 2, 3, 4, 5, 6]) AS filtered;
-- 结果: [4, 5, 6]

-- 数组打平(多维数组展开为一维)
SELECT arrayFlatten([[1, 2], [3, 4], [5]]) AS flattened;
-- 结果: [1, 2, 3, 4, 5]

-- 数组元素操作
SELECT arrayPushBack([1, 2, 3], 4) AS with_new_element;     -- 末尾添加
SELECT arrayPushFront([1, 2, 3], 0) AS with_front_element;  -- 开头添加
SELECT arrayPopBack([1, 2, 3, 4]) AS without_last;          -- 移除末尾
SELECT arrayPopFront([1, 2, 3, 4]) AS without_first;        -- 移除开头

-- 数组切片和索引
SELECT arraySlice([1, 2, 3, 4, 5], 2, 3) AS sliced;        -- 从位置2开始取3个元素
SELECT arrayReverse([1, 2, 3, 4]) AS reversed;              -- 反转数组
SELECT arrayElement([1, 2, 3, 4], 2) AS second_element;     -- 获取第2个元素

数组检查与属性

-- 数组长度和大小
SELECT length([1, 2, 3, 4]) AS array_length;
SELECT empty([]) AS is_empty;
SELECT notEmpty([1, 2, 3]) AS is_not_empty;

-- 数组类型检查
SELECT toTypeName([1, 2, 3]) AS array_type;
SELECT toTypeName(['a', 'b', 'c']) AS string_array_type;

-- 数组内容检查
SELECT arrayExists(x -> x > 3, [1, 2, 3, 4, 5]) AS has_element_gt_3;
SELECT arrayAll(x -> x > 0, [1, 2, 3, 4]) AS all_positive;
SELECT arrayCount(x -> x % 2 = 0, [1, 2, 3, 4, 5, 6]) AS even_count;

-- 数组元素索引查找
SELECT indexOf([10, 20, 30, 40], 30) AS index_of_30;  -- 返回 3
SELECT arrayFirstIndex(x -> x > 25, [10, 20, 30, 40]) AS first_gt_25_index;

数组元素访问与修改

-- 元素访问(1基索引)
SELECT [1, 2, 3, 4, 5][3] AS third_element;    -- 返回 3
SELECT arrayElement([1, 2, 3, 4, 5], 2) AS second_element;  -- 返回 2

-- 负索引访问(从末尾开始)
SELECT [1, 2, 3, 4, 5][-1] AS last_element;    -- 返回 5
SELECT [1, 2, 3, 4, 5][-2] AS second_last;     -- 返回 4

-- 安全访问(越界返回默认值)
SELECT arrayElement([1, 2, 3], 10, 0) AS safe_access;  -- 返回 0

-- 数组切片
SELECT arraySlice([1, 2, 3, 4, 5, 6], 2, 3) AS middle_slice;  -- [2,3,4]
SELECT arraySlice([1, 2, 3, 4, 5], -3) AS last_three;         -- [3,4,5]

-- 数组修改操作
SELECT arrayPushBack([1, 2, 3], 4) AS append_element;
SELECT arrayPushFront([2, 3, 4], 1) AS prepend_element;
SELECT arrayPopBack([1, 2, 3, 4]) AS remove_last;
SELECT arrayPopFront([1, 2, 3, 4]) AS remove_first;
SELECT arrayResize([1, 2, 3], 5, 0) AS resize_array;  -- [1,2,3,0,0]

数组排序与查找

数组排序操作

-- 基本排序
SELECT arraySort([3, 1, 4, 1, 5, 9]) AS sorted_asc;        -- [1,1,3,4,5,9]
SELECT arrayReverseSort([3, 1, 4, 1, 5, 9]) AS sorted_desc; -- [9,5,4,3,1,1]

-- 字符串数组排序
SELECT arraySort(['banana', 'apple', 'cherry']) AS sorted_strings;

-- 自定义排序(Lambda表达式)
SELECT arraySort(x -> -x, [3, 1, 4, 1, 5]) AS custom_sort;  -- 按负值排序

-- 复杂对象排序
SELECT arraySort(x -> tupleElement(x, 2), [('a', 3), ('b', 1), ('c', 2)]) AS sort_by_second;

-- 并行数组排序(多个数组按照第一个数组的顺序排序)
SELECT 
    arraySort([3, 1, 4, 2]) AS sorted_keys,
    arraySort((x, y) -> x, [3, 1, 4, 2], ['c', 'a', 'd', 'b']) AS sorted_values;
-- 结果: [1,2,3,4] 和 ['a','b','c','d']

数组查找和匹配

-- 元素查找
SELECT arrayFirst(x -> x > 3, [1, 2, 3, 4, 5]) AS first_gt_3;     -- 4
SELECT arrayLast(x -> x < 3, [1, 2, 3, 4, 5]) AS last_lt_3;       -- 2
SELECT arrayFirstIndex(x -> x > 3, [1, 2, 3, 4, 5]) AS first_index; -- 4

-- 条件计数和存在性检查
SELECT arrayCount(x -> x > 3, [1, 2, 3, 4, 5, 6]) AS count_gt_3;
SELECT arrayExists(x -> x = 5, [1, 2, 3, 4, 5]) AS contains_5;
SELECT arrayAll(x -> x > 0, [1, 2, 3, 4, 5]) AS all_positive;

-- 模式匹配查找
SELECT arrayFirst(x -> match(x, '^a'), ['apple', 'banana', 'avocado']) AS first_a_word;
SELECT arrayFilter(x -> match(x, 'an'), ['apple', 'banana', 'orange', 'mango']) AS contains_an;

-- 最值查找
SELECT arrayMin([5, 2, 8, 1, 9]) AS min_value;
SELECT arrayMax([5, 2, 8, 1, 9]) AS max_value;
SELECT arrayArgMin((x, y) -> y, ['a', 'b', 'c'], [3, 1, 2]) AS arg_min;  -- 'b'
SELECT arrayArgMax((x, y) -> y, ['a', 'b', 'c'], [3, 1, 2]) AS arg_max;  -- 'a'

数组高阶函数与算法

函数式编程操作

-- Map操作(元素变换)
SELECT arrayMap(x -> x * x, [1, 2, 3, 4, 5]) AS squares;
SELECT arrayMap(x -> upper(x), ['hello', 'world']) AS uppercase;
SELECT arrayMap(x -> tuple(x, x * 2), [1, 2, 3]) AS tuples;

-- Filter操作(条件过滤)
SELECT arrayFilter(x -> x % 2 = 1, [1, 2, 3, 4, 5, 6]) AS odd_numbers;
SELECT arrayFilter(x -> length(x) > 5, ['cat', 'elephant', 'dog', 'butterfly']) AS long_words;

-- Reduce操作(累积计算)
SELECT arrayReduce('sum', [1, 2, 3, 4, 5]) AS array_sum;
SELECT arrayReduce('avg', [1, 2, 3, 4, 5]) AS array_avg;
SELECT arrayReduce('max', [1, 2, 3, 4, 5]) AS array_max;
SELECT arrayReduce('uniq', [1, 2, 2, 3, 3, 3]) AS unique_count;

-- 自定义Reduce操作
SELECT arrayReduce('groupBitOr', [1, 2, 4, 8]) AS bit_or_result;  -- 按位或
SELECT arrayReduce('groupBitAnd', [7, 3, 1]) AS bit_and_result;   -- 按位与

-- 复杂函数式操作
SELECT arrayMap((x, y) -> x + y, [1, 2, 3], [4, 5, 6]) AS element_wise_sum;
SELECT arrayZip([1, 2, 3], ['a', 'b', 'c']) AS zipped_arrays;

数组算法和数学运算

-- 数学统计
SELECT arraySum([1, 2, 3, 4, 5]) AS total_sum;
SELECT arrayAvg([1, 2, 3, 4, 5]) AS average;
SELECT arraySum(arrayMap(x -> x * x, [1, 2, 3, 4])) AS sum_of_squares;

-- 数组差分和累积
SELECT arrayDifference([1, 3, 6, 10, 15]) AS differences;  -- [2,3,4,5]
SELECT arrayCumSum([1, 2, 3, 4, 5]) AS cumulative_sum;     -- [1,3,6,10,15]
SELECT arrayCumSumNonNegative([1, -2, 3, -1, 2]) AS cum_sum_non_neg;

-- 数组旋转和移位
SELECT arrayRotateLeft([1, 2, 3, 4, 5], 2) AS rotate_left;   -- [3,4,5,1,2]
SELECT arrayRotateRight([1, 2, 3, 4, 5], 2) AS rotate_right; -- [4,5,1,2,3]

-- 数组比较和排名
SELECT arrayRank([3, 1, 4, 1, 5]) AS rank_values;
SELECT arrayDotProduct([1, 2, 3], [4, 5, 6]) AS dot_product;  -- 1*4 + 2*5 + 3*6 = 32

-- 序列生成和递推
SELECT arrayMap(i -> i * i, range(1, 6)) AS squares_1_to_5;
SELECT arrayMap(i -> pow(2, i), range(0, 8)) AS powers_of_2;

数组转换和重塑

-- 数组扁平化
SELECT arrayFlatten([[1, 2], [3, 4], [5, 6]]) AS flattened;
SELECT arrayFlatten([[[1, 2]], [[3, 4]]]) AS deep_flattened;

-- 数组重塑(转置)
SELECT 
    arrayMap(i -> arrayMap(j -> arr[j][i], range(1, length(arr) + 1)), 
             range(1, length(arr[1]) + 1)) AS transposed
FROM (
    SELECT [[1, 2, 3], [4, 5, 6]] AS arr
);

-- 数组编码和解码
SELECT arrayEncode([1, 2, 2, 3, 3, 3]) AS rle_encoded;  -- 游程编码
SELECT arrayStringConcat(['a', 'b', 'c'], '') AS concatenated;
SELECT arrayStringConcat(['a', 'b', 'c'], ',') AS csv_format;

-- 数组与字符串互转
SELECT splitByChar(',', '1,2,3,4,5') AS string_to_array;
SELECT arrayStringConcat(['a', 'b', 'c'], '|') AS array_to_string;

数组性能优化

性能最佳实践

-- 1. 避免过大的数组(推荐 < 1万元素)
-- 不好:
SELECT groupArray(large_text_column) FROM huge_table;  -- 可能导致内存问题

-- 好:限制数组大小
SELECT groupArray(100)(large_text_column) FROM huge_table;

-- 2. 使用适当的数据类型
-- 不好:存储数字的字符串数组
SELECT ['1', '2', '3'] AS inefficient;

-- 好:使用数字数组
SELECT [1, 2, 3] AS efficient;

-- 3. 利用数组函数避免arrayJoin
-- 不好:使用arrayJoin处理简单统计
SELECT count() FROM table ARRAY JOIN tags;

-- 好:使用数组函数
SELECT arraySum(arrayMap(x -> 1, tags)) AS tag_count FROM table;

数组内存和性能监控

-- 检查数组大小分布
SELECT 
    length(array_column) AS array_size,
    count() AS count,
    avg(length(array_column)) AS avg_size,
    max(length(array_column)) AS max_size
FROM table_with_arrays
GROUP BY length(array_column)
ORDER BY array_size;

-- 数组内存使用估算
SELECT 
    table,
    column,
    sum(length(array_column) * 8) AS estimated_bytes  -- 假设每个元素8字节
FROM system.columns 
WHERE type LIKE 'Array%'
GROUP BY table, column;

-- 性能对比:数组vs多行
-- 方案1:数组存储
SELECT user_id, arraySum(scores) AS total_score
FROM user_scores_array;

-- 方案2:多行存储
SELECT user_id, sum(score) AS total_score  
FROM user_scores_normalized
GROUP BY user_id;

与Hive聚合函数对比

Hive函数ClickHouse对应函数说明
collect_set(col)groupUniqArray(col)去重聚合为数组
collect_list(col)groupArray(col)不去重聚合为数组
concat_ws(sep, col1, col2, ...)groupConcat(sep)(col)字符串连接聚合
count(distinct col)uniq(col)去重计数
percentile(col, 0.5)quantile(0.5)(col)分位数计算
size(collect_set(col))uniq(col)去重后数量
array_contains(arr, val)arrayExists(x -> x = val, arr)数组包含检查
sort_array(arr)arraySort(arr)数组排序
map_keys(map_col)mapKeys(map_col)Map键获取
map_values(map_col)mapValues(map_col)Map值获取
-- 用户行为分析:类似Hive的复杂聚合查询迁移
SELECT 
    user_id,
    -- 类似Hive的collect_set,收集用户所有访问的独特页面
    groupUniqArray(page_url) AS unique_pages_visited,
    -- 类似Hive的collect_list,保持用户访问页面的时间顺序
    groupArray(page_url) AS page_visit_sequence,
    -- 类似Hive的size(collect_set()),计算独特页面数量
    uniq(page_url) AS unique_page_count,
    -- 类似Hive的concat_ws,连接用户访问路径
    arrayStringConcat(groupArray(page_url), ' -> ') AS user_journey,
    -- 类似Hive的percentile,计算用户访问时长分位数
    quantile(0.5)(visit_duration) AS median_visit_time,
    -- 类似Hive的count(distinct)进行条件统计
    uniqIf(session_id, visit_duration > 300) AS long_sessions,
    -- 复杂条件聚合,类似Hive的case when + collect_set
    groupUniqArrayIf(page_category, visit_duration > 60) AS engaged_categories,
    -- 类似Hive的map聚合,页面停留时间统计
    mapAgg(page_category, avg_duration) AS category_avg_durations
FROM (
    SELECT 
        user_id,
        page_url,
        page_category,
        session_id,
        visit_duration,
        avg(visit_duration) OVER (PARTITION BY user_id, page_category) AS avg_duration
    FROM user_page_visits
    WHERE visit_date >= today() - 30  -- 最近30天数据
) 
GROUP BY user_id
ORDER BY unique_page_count DESC
LIMIT 100;

-- 电商分析:商品维度的复杂聚合统计
SELECT 
    category,
    -- 类似Hive collect_set,收集该分类下的所有品牌
    groupUniqArray(brand) AS available_brands,
    -- 类似Hive collect_list,按销量排序的商品列表
    arrayStringConcat(
        arraySort(x -> tupleElement(x, 2), 
                 groupArray(tuple(product_name, sales_count))), 
        ', '
    ) AS top_products_by_sales,
    -- 类似Hive的percentile_approx,价格分布分析
    quantiles(0.25, 0.5, 0.75, 0.95)(price) AS price_quartiles,
    -- 复杂嵌套聚合,类似Hive的复杂case when聚合
    groupArray(tuple(
        brand,
        countIf(price > 1000),                    -- 高价商品数
        avgIf(rating, rating > 0),                -- 平均评分
        groupUniqArray(color),                    -- 可选颜色
        maxIf(sales_count, in_stock = 1)          -- 库存商品最高销量
    )) AS brand_detailed_stats,
    -- 类似Hive的map函数,品牌价格统计
    mapFromArrays(
        groupUniqArray(brand),
        groupArray(avg_price_by_brand)
    ) AS brand_price_map
FROM (
    SELECT 
        category,
        brand,
        product_name,
        price,
        rating,
        color,
        sales_count,
        in_stock,
        avg(price) OVER (PARTITION BY category, brand) AS avg_price_by_brand
    FROM products 
    WHERE status = 'active'
) 
GROUP BY category
HAVING uniq(brand) > 5  -- 至少5个品牌的分类
ORDER BY count() DESC;

-- 时间序列分析:用户留存和转化漏斗
SELECT 
    registration_date,
    -- 新用户注册数
    count() AS new_users,
    -- 类似Hive collect_set,收集用户完成的关键行为
    groupUniqArray(completed_actions) AS conversion_actions,
    -- 各阶段转化率统计
    countIf(day1_active) / count() AS day1_retention,
    countIf(day7_active) / count() AS day7_retention,
    countIf(day30_active) / count() AS day30_retention,
    -- 类似Hive的复杂聚合,用户分层统计
    mapFromArrays(
        ['high_value', 'medium_value', 'low_value'],
        [
            countIf(total_spending > 1000),
            countIf(total_spending BETWEEN 100 AND 1000),
            countIf(total_spending < 100)
        ]
    ) AS user_value_segments,
    -- 用户行为路径分析
    topK(10)(arrayStringConcat(
        groupArray(action_sequence), ' -> '
    )) AS common_user_journeys
FROM (
    SELECT 
        user_id,
        toDate(registration_time) AS registration_date,
        arrayJoin(user_actions) AS completed_actions,
        any(total_spending) AS total_spending,
        any(day1_active) AS day1_active,
        any(day7_active) AS day7_active,
        any(day30_active) AS day30_active,
        groupArray(action_name) AS action_sequence
    FROM user_lifecycle_analysis
    WHERE registration_time >= today() - 90
    GROUP BY user_id, registration_date
)
GROUP BY registration_date
ORDER BY registration_date DESC;

-- 原有的用户标签分析示例
SELECT 
    tag,
    count() AS user_count,
    countDistinct(user_id) AS unique_users
FROM (
    SELECT 
        user_id,
        arrayJoin(splitByChar(',', tags)) AS tag
    FROM user_profiles
    WHERE tags != ''
)
GROUP BY tag
ORDER BY user_count DESC
LIMIT 20;

-- 事件序列分析:展开用户行为路径
SELECT 
    step_number,
    event_name,
    count() AS occurrence_count
FROM (
    SELECT 
        user_id,
        arrayJoin(arrayEnumerate(event_sequence)) AS step_number,
        arrayJoin(event_sequence) AS event_name
    FROM user_behavior_sequence
) 
GROUP BY step_number, event_name
ORDER BY step_number, occurrence_count DESC;

-- 商品分类分析:多级分类展开
SELECT 
    level,
    category,
    count() AS product_count
FROM (
    SELECT 
        product_id,
        arrayJoin(arrayEnumerate(category_path)) AS level,
        arrayJoin(category_path) AS category
    FROM products
    WHERE length(category_path) > 0
)
GROUP BY level, category
ORDER BY level, product_count DESC;

字符串操作

-- 字符串分割
SELECT splitByChar(',', 'a,b,c');
select arrayMap(x->splitByChar('#',x)[1],splitByString('\x01',detail))

-- 字符串匹配,
SELECT match('string', 'pattern');
SELECT match('aftvf', 'a');

-- 字符串包含多个模式
SELECT * FROM table WHERE match(column_name, 'MG|XZ');

-- 字符串替换
SELECT replaceAll('hello world world', 'world', 'ClickHouse') AS result;
-- 输出:hello ClickHouse ClickHouse

SELECT replaceOne('hello world world', 'world', 'ClickHouse') AS result;
-- 输出:hello ClickHouse world

SELECT replaceRegexpAll('abc123xyz456', '\\d+', '_') AS result;
-- 输出:abc_xyz_

条件与控制函数

multiIf函数

multiIf是ClickHouse中最常用的条件判断函数,类似于SQL的CASE WHEN语句,但性能更高。

-- multiIf语法:multiIf(condition1, result1, condition2, result2, ..., default_result)
SELECT multiIf(
    score >= 90, 'A',
    score >= 80, 'B', 
    score >= 70, 'C',
    score >= 60, 'D',
    'F'
) AS grade
FROM student_scores;

-- 等价的CASE WHEN写法(但性能较差)
SELECT CASE 
    WHEN score >= 90 THEN 'A'
    WHEN score >= 80 THEN 'B'
    WHEN score >= 70 THEN 'C'
    WHEN score >= 60 THEN 'D'
    ELSE 'F'
END AS grade
FROM student_scores;
-- 用户等级划分
SELECT 
    user_id,
    user_name,
    total_amount,
    multiIf(
        total_amount >= 10000, 'VIP',
        total_amount >= 5000, 'Gold',
        total_amount >= 1000, 'Silver',
        'Bronze'
    ) AS user_level
FROM user_orders;

-- 数据质量评分
SELECT 
    id,
    multiIf(
        name != '' AND email != '' AND phone != '', 'Complete',
        name != '' AND email != '', 'Good',
        name != '', 'Basic',
        'Incomplete'
    ) AS data_quality
FROM user_profiles;

-- 复杂业务逻辑判断
SELECT 
    order_id,
    multiIf(
        status = 'paid' AND delivery_time <= now(), 'Delivered',
        status = 'paid' AND delivery_time > now(), 'In Transit',
        status = 'pending' AND created_time < now() - INTERVAL 1 HOUR, 'Expired',
        status = 'pending', 'Waiting Payment',
        'Unknown'
    ) AS order_status
FROM orders;

if函数

简单的二元条件判断函数。

-- if语法:if(condition, true_result, false_result)
SELECT 
    user_id,
    if(age >= 18, 'Adult', 'Minor') AS age_group,
    if(gender = 'M', '男', '女') AS gender_cn,
    if(balance > 0, balance, 0) AS available_balance
FROM users;

-- 处理NULL值
SELECT 
    product_id,
    if(discount IS NULL, 0, discount) AS final_discount,
    if(isNull(description), 'No description', description) AS product_desc
FROM products;

条件聚合函数

-- countIf:条件计数
SELECT 
    department,
    countIf(salary > 10000) AS high_salary_count,
    countIf(age < 30) AS young_employee_count,
    countIf(gender = 'F') AS female_count
FROM employees
GROUP BY department;

-- sumIf:条件求和
SELECT 
    product_category,
    sumIf(amount, status = 'completed') AS completed_amount,
    sumIf(amount, status = 'pending') AS pending_amount,
    sumIf(quantity, discount > 0) AS discounted_quantity
FROM sales
GROUP BY product_category;

-- avgIf:条件平均值
SELECT 
    store_id,
    avgIf(rating, rating > 0) AS avg_valid_rating,
    avgIf(price, category = 'electronics') AS avg_electronics_price
FROM products
GROUP BY store_id;

空值处理函数

-- ifNull:处理NULL值
SELECT 
    user_id,
    ifNull(nickname, username) AS display_name,
    ifNull(avatar_url, '/default/avatar.png') AS profile_image
FROM users;

-- nullIf:条件置空
SELECT 
    product_id,
    nullIf(discount, 0) AS effective_discount,  -- 将0转换为NULL
    nullIf(description, '') AS valid_description  -- 将空字符串转换为NULL
FROM products;

-- coalesce:返回第一个非NULL值
SELECT 
    user_id,
    coalesce(mobile_phone, home_phone, office_phone) AS contact_phone,
    coalesce(shipping_address, billing_address, '地址未填写') AS delivery_address
FROM user_contacts;

数值比较函数

-- greatest:返回最大值
SELECT 
    student_id,
    greatest(math_score, english_score, chinese_score) AS highest_score,
    greatest(0, balance - frozen_amount) AS available_balance
FROM student_grades;

-- least:返回最小值
SELECT 
    product_id,
    least(original_price, competitor_price) AS best_price,
    least(stock_quantity, max_order_quantity) AS purchasable_quantity
FROM product_pricing;

复杂条件组合

-- 多条件组合判断
SELECT 
    order_id,
    customer_id,
    multiIf(
        -- VIP客户且金额大于1000
        customer_level = 'VIP' AND total_amount > 1000, 'VIP_HIGH',
        -- VIP客户
        customer_level = 'VIP', 'VIP_NORMAL',
        -- 新客户且首单
        is_new_customer = 1 AND order_count = 1, 'NEW_CUSTOMER',
        -- 大额订单
        total_amount > 5000, 'HIGH_VALUE',
        -- 普通订单
        'NORMAL'
    ) AS order_type,
    
    -- 计算折扣
    multiIf(
        customer_level = 'VIP', total_amount * 0.1,
        total_amount > 1000, total_amount * 0.05,
        is_new_customer = 1, 50,
        0
    ) AS discount_amount
FROM orders;

-- 数据清洗和标准化
SELECT 
    user_id,
    -- 手机号标准化
    multiIf(
        match(phone, '^1[3-9]\\d{9}$'), phone,  -- 标准11位手机号
        match(phone, '^\\d{11}$'), phone,       -- 11位数字
        length(phone) = 10, '1' || phone,       -- 10位数字,补1
        ''  -- 无效手机号置空
    ) AS normalized_phone,
    
    -- 邮箱验证
    if(match(email, '^[\\w.-]+@[\\w.-]+\\.[a-zA-Z]{2,}$'), email, '') AS valid_email,
    
    -- 年龄分组
    multiIf(
        age < 18, '未成年',
        age < 30, '青年',
        age < 50, '中年',
        age < 70, '中老年',
        '老年'
    ) AS age_group
FROM user_profiles;

性能优化建议

-- 好的做法:使用multiIf
SELECT multiIf(status = 1, 'Active', status = 2, 'Inactive', 'Unknown') FROM users;

-- 避免:嵌套if语句(性能较差)
SELECT if(status = 1, 'Active', if(status = 2, 'Inactive', 'Unknown')) FROM users;

-- 条件聚合优化
SELECT 
    date,
    -- 高效:直接使用条件聚合
    countIf(event_type = 'click') AS click_count,
    countIf(event_type = 'view') AS view_count,
    -- 避免:使用WHERE子查询(性能较差)
    -- (SELECT count() FROM events e2 WHERE e2.date = e1.date AND e2.event_type = 'click') AS click_count
FROM events e1
GROUP BY date;

日期时间函数

时间获取函数

-- 当前时间函数
SELECT 
    now() AS current_datetime,           -- 当前日期时间
    today() AS current_date,             -- 当前日期
    yesterday() AS yesterday_date,       -- 昨天日期
    toUnixTimestamp(now()) AS timestamp; -- Unix时间戳

-- 时间创建函数
SELECT 
    toDateTime('2023-12-25 15:30:00') AS datetime_from_string,
    toDate('2023-12-25') AS date_from_string,
    fromUnixTimestamp(1703505000) AS datetime_from_timestamp;

时间格式化函数

-- 格式化输出
SELECT 
    formatDateTime(now(), '%Y-%m-%d %H:%i:%S') AS formatted_datetime,
    formatDateTime(now(), '%Y年%m月%d日 %H时%i分') AS chinese_format,
    toString(now()) AS string_format;

-- 时间部分提取
SELECT 
    toYear(now()) AS year,
    toMonth(now()) AS month,
    toDayOfMonth(now()) AS day,
    toHour(now()) AS hour,
    toMinute(now()) AS minute,
    toSecond(now()) AS second,
    toDayOfWeek(now()) AS day_of_week,    -- 1=Monday, 7=Sunday
    toDayOfYear(now()) AS day_of_year;

时间计算函数

-- 时间加减
SELECT 
    event_time,
    addDays(event_time, 7) AS one_week_later,
    addMonths(event_time, 1) AS one_month_later,
    addYears(event_time, 1) AS one_year_later,
    subtractDays(event_time, 30) AS thirty_days_ago,
    subtractSeconds(now(),12) 
FROM events;

-- 时间差计算
SELECT 
    order_time,
    delivery_time,
    dateDiff('day', order_time, delivery_time) AS delivery_days,
    dateDiff('hour', order_time, delivery_time) AS delivery_hours,
    age('day', order_time, delivery_time) AS days_difference
FROM orders;

-- 时间截断(取整)
SELECT 
    event_time,
    toStartOfMinute(event_time) AS minute_start,
    toStartOfHour(event_time) AS hour_start,
    toStartOfDay(event_time) AS day_start,
    toStartOfWeek(event_time) AS week_start,
    toStartOfMonth(event_time) AS month_start,
    toStartOfQuarter(event_time) AS quarter_start,
    toStartOfYear(event_time) AS year_start
FROM events;

实际应用示例

-- 用户活跃度统计(按小时)
SELECT 
    toStartOfHour(login_time) AS hour_slot,
    count() AS login_count
FROM user_logins
WHERE toDate(login_time) = today()
GROUP BY hour_slot
ORDER BY hour_slot;

-- 订单时效性分析
SELECT 
    order_id,
    multiIf(
        dateDiff('hour', created_time, now()) <= 24, '24小时内',
        dateDiff('day', created_time, now()) <= 7, '7天内',
        dateDiff('day', created_time, now()) <= 30, '30天内',
        '30天以上'
    ) AS order_age,
    if(dateDiff('day', created_time, now()) > 30, '需要关注', '正常') AS status
FROM orders
WHERE status = 'pending';

-- 生日提醒和年龄计算
SELECT 
    user_id,
    birthday,
    age('year', birthday, today()) AS current_age,
    addYears(birthday, age('year', birthday, today()) + 1) AS next_birthday,
    dateDiff('day', today(), addYears(birthday, age('year', birthday, today()) + 1)) AS days_to_birthday
FROM users
WHERE dateDiff('day', today(), addYears(birthday, age('year', birthday, today()) + 1)) <= 30;

数学函数

基本数学运算

-- 常用数学函数
SELECT 
    abs(-15) AS absolute_value,          -- 绝对值:15
    round(3.14159, 2) AS rounded,        -- 四舍五入:3.14
    ceil(3.14) AS ceiling,               -- 向上取整:4
    floor(3.99) AS floor_value,          -- 向下取整:3
    truncate(3.99, 1) AS truncated;      -- 截断:3.9

-- 幂运算和开方
SELECT 
    pow(2, 3) AS power,                  -- 2的3次方:8
    sqrt(16) AS square_root,             -- 平方根:4
    cbrt(27) AS cube_root,               -- 立方根:3
    exp(1) AS euler_e,                   -- e的1次方
    log(10) AS natural_log,              -- 自然对数
    log10(100) AS log_base_10;           -- 以10为底的对数:2

三角函数

-- 三角函数(参数为弧度)
SELECT 
    sin(pi() / 2) AS sine,               -- sin(π/2) = 1
    cos(0) AS cosine,                    -- cos(0) = 1
    tan(pi() / 4) AS tangent,            -- tan(π/4) = 1
    asin(1) AS arcsine,                  -- arcsin(1) = π/2
    acos(1) AS arccosine,                -- arccos(1) = 0
    atan(1) AS arctangent;               -- arctan(1) = π/4

随机函数

-- 随机数生成
SELECT 
    rand() AS random_uint32,             -- 随机32位整数
    rand() / 4294967295 AS random_0_1,   -- 0-1之间的随机数
    rand() % 100 AS random_0_99,         -- 0-99之间的随机整数
    randConstant() AS constant_random;    -- 查询期间保持不变的随机数

-- 随机采样
SELECT * FROM large_table 
WHERE rand() % 100 < 10                  -- 随机采样10%的数据
LIMIT 1000;

统计函数

-- 聚合统计函数
SELECT 
    department,
    count() AS employee_count,
    sum(salary) AS total_salary,
    avg(salary) AS average_salary,
    min(salary) AS min_salary,
    max(salary) AS max_salary,
    stddevPop(salary) AS salary_stddev,   -- 标准差
    varPop(salary) AS salary_variance     -- 方差
FROM employees
GROUP BY department;

-- 分位数函数
SELECT 
    department,
    quantile(0.5)(salary) AS median_salary,     -- 中位数
    quantile(0.25)(salary) AS q1_salary,        -- 第一四分位数
    quantile(0.75)(salary) AS q3_salary,        -- 第三四分位数
    quantile(0.9)(salary) AS p90_salary,        -- 90%分位数
    quantiles(0.1, 0.5, 0.9)(salary) AS quantiles_array
FROM employees
GROUP BY department;

实际应用示例

-- 价格计算和折扣
SELECT 
    product_id,
    original_price,
    discount_rate,
    round(original_price * (1 - discount_rate), 2) AS final_price,
    if(discount_rate > 0, 
       round(original_price * discount_rate, 2), 
       0) AS discount_amount
FROM products;

-- 距离计算(地理坐标)
SELECT 
    store_id,
    user_lat,
    user_lng,
    store_lat,
    store_lng,
    -- 简化的距离计算(实际应使用haversine公式)
    round(sqrt(pow(user_lat - store_lat, 2) + pow(user_lng - store_lng, 2)) * 111, 2) AS distance_km
FROM user_store_distances;

-- 评分和排名计算
SELECT 
    product_id,
    reviews_count,
    total_rating,
    round(total_rating / reviews_count, 1) AS avg_rating,
    -- 贝叶斯平均评分(考虑评论数量)
    round((total_rating + 3.0 * 10) / (reviews_count + 10), 1) AS bayesian_avg
FROM product_reviews
WHERE reviews_count > 0;

-- 数据分析中的异常检测
WITH stats AS (
    SELECT 
        avg(value) AS mean_value,
        stddevPop(value) AS std_value
    FROM sensor_data
    WHERE date = today()
)
SELECT 
    timestamp,
    value,
    (value - stats.mean_value) / stats.std_value AS z_score,
    if(abs((value - stats.mean_value) / stats.std_value) > 2, 'Anomaly', 'Normal') AS status
FROM sensor_data, stats
WHERE date = today()
ORDER BY abs(z_score) DESC;

URL和编码函数

URL处理函数

-- URL解析函数
SELECT 
    'https://example.com:8080/path/to/page?param1=value1&param2=value2#section' AS url,
    protocol(url) AS protocol,           -- https
    domain(url) AS domain,               -- example.com
    domainWithoutWWW(url) AS domain_clean, -- example.com
    port(url) AS port,                   -- 8080
    path(url) AS path,                   -- /path/to/page
    pathFull(url) AS path_full,          -- /path/to/page?param1=value1&param2=value2#section
    queryString(url) AS query_string,    -- param1=value1&param2=value2
    fragment(url) AS fragment;           -- section

-- 提取URL参数
SELECT 
    extractURLParameter('https://example.com/search?q=clickhouse&category=database&page=1', 'q') AS search_query,
    extractURLParameter('https://example.com/search?q=clickhouse&category=database&page=1', 'category') AS category,
    extractURLParameter('https://example.com/search?q=clickhouse&category=database&page=1', 'page') AS page_num;

-- URL编码解码
SELECT 
    encodeURLComponent('Hello World!') AS encoded,        -- Hello%20World%21
    decodeURLComponent('Hello%20World%21') AS decoded;    -- Hello World!

字符编码函数

-- Base64编码解码
SELECT 
    base64Encode('Hello ClickHouse!') AS base64_encoded,
    base64Decode('SGVsbG8gQ2xpY2tIb3VzZSE=') AS base64_decoded;

-- 十六进制编码解码
SELECT 
    hex('ClickHouse') AS hex_encoded,                     -- 436C69636B486F757365
    unhex('436C69636B486F757365') AS hex_decoded,         -- ClickHouse
    lower(hex(MD5('password123'))) AS md5_hash;           -- MD5哈希

-- Unicode编码
SELECT 
    char(65) AS char_from_code,                           -- A
    ord('A') AS code_from_char;                           -- 65

实际应用示例

-- 网站流量分析
SELECT 
    domain(referrer_url) AS referrer_domain,
    extractURLParameter(current_url, 'utm_source') AS traffic_source,
    extractURLParameter(current_url, 'utm_campaign') AS campaign,
    count() AS visit_count
FROM web_analytics
WHERE toDate(visit_time) = today()
GROUP BY referrer_domain, traffic_source, campaign
ORDER BY visit_count DESC;

-- API参数解析
SELECT 
    request_id,
    path(request_url) AS api_endpoint,
    extractURLParameter(request_url, 'version') AS api_version,
    extractURLParameter(request_url, 'format') AS response_format,
    if(extractURLParameter(request_url, 'debug') = 'true', 1, 0) AS debug_mode
FROM api_logs
WHERE toDate(request_time) = today();

-- 用户设备信息解析(从User-Agent)
SELECT 
    user_id,
    user_agent,
    multiIf(
        match(user_agent, 'iPhone'), 'iOS',
        match(user_agent, 'Android'), 'Android',
        match(user_agent, 'Windows'), 'Windows',
        match(user_agent, 'Mac'), 'macOS',
        'Unknown'
    ) AS device_os,
    if(match(user_agent, 'Mobile'), 'Mobile', 'Desktop') AS device_type
FROM user_sessions;

哈希和加密函数

哈希函数

-- 常用哈希函数
SELECT 
    'ClickHouse' AS text,
    MD5(text) AS md5_hash,
    SHA1(text) AS sha1_hash,
    SHA256(text) AS sha256_hash,
    cityHash64(text) AS cityhash64,
    sipHash64(text) AS siphash64;

-- 快速哈希(用于分布和采样)
SELECT 
    user_id,
    cityHash64(user_id) AS hash_value,
    cityHash64(user_id) % 100 AS bucket,              -- 分100个桶
    if(cityHash64(user_id) % 1000 < 50, 1, 0) AS sample_5_percent
FROM users;

实际应用示例

-- 数据脱敏
SELECT 
    user_id,
    left(MD5(email), 8) AS email_hash,                 -- 邮箱脱敏
    left(MD5(phone), 8) AS phone_hash,                 -- 手机号脱敏
    if(length(real_name) > 0, 
       concat(left(real_name, 1), '***'), 
       '') AS masked_name                              -- 姓名脱敏
FROM sensitive_user_data;

-- 一致性哈希分片
SELECT 
    order_id,
    cityHash64(customer_id) % 16 AS shard_id,          -- 16个分片
    multiIf(
        cityHash64(customer_id) % 16 < 4, 'shard_group_1',
        cityHash64(customer_id) % 16 < 8, 'shard_group_2',
        cityHash64(customer_id) % 16 < 12, 'shard_group_3',
        'shard_group_4'
    ) AS shard_group
FROM orders;

-- A/B测试分组
SELECT 
    user_id,
    experiment_name,
    if(cityHash64(concat(user_id, experiment_name)) % 2 = 0, 'A', 'B') AS ab_group,
    if(cityHash64(user_id) % 100 < 10, 'treatment', 'control') AS test_group
FROM experiment_users;

地理函数

<!-- 把geohash转为经纬度,再计算距离 -->
select geoDistance(geohashDecode('ww92kf').1,geohashDecode('ww92kf').2,geohashDecode('wtw357').1,geohashDecode('wtw357').2) as distance;

   ┌──────────distance─┐
1. │ 886444.2706242428 │
   └───────────────────┘

系统管理

系统表详解

系统表分类

系统表用途重要字段
system.metrics系统指标监控metric, value, description
system.events系统事件统计event, value, description
system.processes正在执行的查询query_id, query, elapsed(秒), read_rows
system.query_log查询历史日志event_time, query_duration_ms, read_rows
system.parts表分区信息database, table, partition, rows
system.merges合并任务信息database, table, num_parts, total_size_bytes_compressed

跨集群、节点查询

-- 查看分布式表每个节点数据条数
SELECT
    hostName() AS host,
    toYYYYMMDD(ts) date,
    count() AS rows
FROM cluster('glab_cluster_single', glab_relation.id_2_wifi_predict_local)
GROUP BY host,date
order by host, date;


-- 查看指定集群,指定节点数据
SELECT * 
FROM cluster('glab_cluster_batch', glab_relation.id_2_wifi_predict_local) 
where hostName() ='hzxs-ga-ck-xs13'
and toYYYYMMDD(ts)='20250917' limit 3;

-- 对比两个集群数据条数
with
t1 as (SELECT toInt32(toInt32(replaceRegexpAll(hostName(),'hzxs-ga-ck-xs',''))-6)  host,  concat('hzxs-ga-ck-xs',host+6) single_host,  concat('hzxs-ga-newck-xs',host+6-12) single_newck_host,  count() AS single_rows FROM cluster('glab_cluster_single', glab_gid_info.wifi_wide_v2_local)  GROUP BY host order by host),
t2 as (SELECT toInt32(replaceRegexpAll(hostName(),'hzxs-ga-ck-xs',''))             host,  concat('hzxs-ga-ck-xs',host)    batch_host,  concat('hzxs-ga-newck-xs',host-12)    batch_newck_host,  count() AS batch_rows  FROM cluster('glab_cluster_batch', glab_gid_info.wifi_wide_v2_local)  GROUP BY host order by host)
SELECT t1.single_host,t1.single_newck_host,t1.single_rows,t2.batch_host,t2.batch_newck_host,t2.batch_rows, t1.single_rows=t2.batch_rows equal from t1 join t2 on t1.host=t2.host;

查询监控


-- 查看正在执行的查询
SELECT 
    query_id,
    subtractSeconds(now(),elapsed) start_time,
    substr(query, 1, 50),
    CASE
        WHEN elapsed < 60 
            THEN format('{} sec', toString(round(elapsed, 2)))
        WHEN elapsed < 3600 
            THEN format('{} min', toString(round(elapsed / 60, 2)))
        ELSE format('{} h', toString(round(elapsed / 3600, 2)))
    END AS elapsed_fmt,
    read_rows,
    total_rows_approx,
    formatReadableSize(memory_usage)
FROM system.processes
WHERE query NOT LIKE '%SELECT query%'
ORDER BY elapsed DESC;

-- 查看历史执行SQL
SELECT 
    event_time,
    query_duration_ms/1000 AS `耗时()`,
    read_rows AS `读取行数`,
    result_rows AS `返回行数`,
    formatReadableSize(result_bytes) AS `返回数据大小`,
    formatReadableSize(memory_usage) AS `内存使用`,
    substr(query, 1, 40),
    databases,
    tables
FROM system.query_log
WHERE query NOT LIKE '%*%'
AND event_time >= '2025-01-21 19:00:00'
AND query_kind = 'Select'
ORDER BY query_duration_ms DESC

系统表查询示例

1. 查询慢问题排查

-- 1.1 查看当前正在执行的慢查询
SELECT 
    query_id,
    user,
    query,
    elapsed AS `执行时间()`,
    read_rows AS `读取行数`,
    read_bytes AS `读取字节数`,
    total_rows_approx AS `预估总行数`,
    formatReadableSize(memory_usage) AS `内存使用`,
    formatReadableSize(peak_memory_usage) AS `峰值内存使用`,
    thread_ids,
    ProfileEvents,
    Settings
FROM system.processes
WHERE query NOT LIKE '%system.processes%'
AND elapsed > 10  -- 执行时间超过10秒的查询
ORDER BY elapsed DESC;

-- 1.2 查看历史慢查询(最近1小时)
SELECT 
    event_time,
    query_duration_ms/1000 AS `耗时()`,
    read_rows AS `读取行数`,
    read_bytes AS `读取字节数`,
    result_rows AS `返回行数`,
    formatReadableSize(result_bytes) AS `返回数据大小`,
    formatReadableSize(memory_usage) AS `内存使用`,
    user,
    query,
    databases,
    tables,
    exception
FROM system.query_log
WHERE event_time >= now() - INTERVAL 1 HOUR
AND query_duration_ms > 5000  -- 超过5秒的查询
AND query_kind = 'Select'
ORDER BY query_duration_ms DESC
LIMIT 20;

-- 1.3 分析查询性能趋势
SELECT 
    toStartOfHour(event_time) AS hour,
    count() AS query_count,
    avg(query_duration_ms)/1000 AS avg_duration_sec,
    max(query_duration_ms)/1000 AS max_duration_sec,
    sum(read_rows) AS total_read_rows,
    sum(read_bytes) AS total_read_bytes
FROM system.query_log
WHERE event_time >= now() - INTERVAL 24 HOUR
AND query_kind = 'Select'
GROUP BY hour
ORDER BY hour DESC;

-- 1.4 查找最耗时的查询模式
SELECT 
    substr(query, 1, 100) AS query_pattern,
    count() AS execution_count,
    avg(query_duration_ms)/1000 AS avg_duration_sec,
    sum(query_duration_ms)/1000 AS total_duration_sec,
    sum(read_rows) AS total_read_rows
FROM system.query_log
WHERE event_time >= now() - INTERVAL 1 HOUR
AND query_kind = 'Select'
GROUP BY query_pattern
HAVING execution_count > 1
ORDER BY avg_duration_sec DESC
LIMIT 10;

2. 表分区和存储监控

-- 优化表
OPTIMIZE TABLE table_name FINAL;
OPTIMIZE TABLE table_name PARTITION partition_name FINAL;

(data_compressed_bytes) DESC;

-- 7.3 查看表大小
SELECT 
    database,
    table,
    formatReadableSize(sum(data_uncompressed_bytes)) AS uncompressed_size,
    formatReadableSize(sum(data_compressed_bytes)) AS compressed_size,
    round((sum(data_uncompressed_bytes) / sum(data_compressed_bytes)), 2) AS compression_ratio_percent,
    sum(rows) AS total_rows,
    count(DISTINCT partition) partition_num,
    count() AS total_parts
FROM system.parts
WHERE active = 1
and database='glab_relation'
and table='wifi_2_id_predict_local' 
GROUP BY database, table
HAVING sum(data_uncompressed_bytes) > 0
ORDER BY sum(data_compressed_bytes) DESC;


-- 查看字段大小
select
  name,
  type,
  position,
  formatReadableSize( data_compressed_bytes )                      compressed,
  formatReadableSize( data_uncompressed_bytes )                    uncompressed,
  round( ( data_uncompressed_bytes / data_compressed_bytes ) , 2 ) compression_ratio_percent,
  comment
from
  system.columns
where
  table = 'wifi_2_id_local';

-- 5.1 表分区大小
SELECT 
    database,
    table,
    partition,
    formatReadableSize(sum(data_uncompressed_bytes)) AS uncompressed_size,
    formatReadableSize(sum(data_compressed_bytes)) AS compressed_size,
    sum(rows) AS rows_count,
    count() AS parts_count,
    min(min_time) AS min_time,
    max(max_time) AS max_time,
    active
FROM system.parts
where database='glab_gid_info' and table='wifi_wide_v2_local'
GROUP BY database, table, partition, active
ORDER BY parts_count DESC
LIMIT 20;

sum(data_uncompressed_bytes)

-- 查看分区已合并、未合并情况
select
  t1.database,
  t1.table,
  partition_num,
  unmerged_partition_num,
  round( unmerged_partition_num / toFloat64(partition_num) * 100 , 2 ) unmerged_partition_ratio,
  parts_num
from
  (
    select
      database,
      table,
      count( ) unmerged_partition_num
    from
      ( select
          database,
          table,
          partition,
          count( ) partition_num
        from
          system.parts
        where
          active = 1
        group by
          database, table, partition
        having
          partition_num > 1 ) t0
    group by
      database, table
    ) t1
    join (
           select
             database,
             table,
             count( distinct partition ) partition_num,
             count( )                    parts_num
           from
             system.parts
           where
             active = 1
           group by
             database, table
           ) t2
           on t1.database = t2.database and t1.table = t2.table
order by
  unmerged_partition_num desc;

3. 内存使用问题排查

-- 2.1 查看当前内存使用情况
SELECT 
    metric,
    value,
    description
FROM system.metrics
WHERE metric LIKE '%Memory%'
ORDER BY value DESC;

-- 2.2 查看查询内存使用详情
SELECT 
    query_id,
    user,
    query,
    formatReadableSize(memory_usage) AS current_memory,
    formatReadableSize(peak_memory_usage) AS peak_memory,
    elapsed AS `执行时间()`,
    read_rows AS `读取行数`
FROM system.processes
WHERE memory_usage > 1000000000  -- 内存使用超过1GB
ORDER BY memory_usage DESC;

-- 2.3 查看历史查询内存使用统计
SELECT 
    toStartOfHour(event_time) AS hour,
    count() AS query_count,
    avg(memory_usage) AS avg_memory_usage,
    max(memory_usage) AS max_memory_usage,
    sum(memory_usage) AS total_memory_usage
FROM system.query_log
WHERE event_time >= now() - INTERVAL 24 HOUR
AND memory_usage > 0
GROUP BY hour
ORDER BY hour DESC;

4. 系统资源监控

-- 3.1 查看系统整体指标
SELECT 
    metric,
    value,
    description
FROM system.metrics
WHERE metric IN (
    'CPUUtilization',
    'MemoryResident',
    'MemoryVirtual',
    'MemoryShared',
    'DiskDataBytes',
    'NetworkReceiveBytes',
    'NetworkSendBytes',
    'Query',
    'SelectQuery',
    'InsertQuery',
    'Merge',
    'ReplicatedFetch',
    'ReplicatedSend',
    'ReplicatedChecks'
)
ORDER BY metric;

-- 3.2 查看系统事件统计
SELECT 
    event,
    value,
    description
FROM system.events
WHERE event IN (
    'Query',
    'SelectQuery',
    'InsertQuery',
    'Merge',
    'ReplicatedFetch',
    'ReplicatedSend',
    'ReplicatedChecks',
    'DelayedInserts',
    'ContextLock',
    'StorageBufferFlush',
    'StorageBufferErrorOnFlush'
)
ORDER BY value DESC;

5. 合并任务监控

-- 4.1 查看正在进行的合并任务
SELECT 
    database,
    table,
    partition_id,
    is_mutation,
    num_parts,
    formatReadableSize(total_size_bytes_compressed) AS compressed_size,
    formatReadableSize(total_size_bytes_uncompressed) AS uncompressed_size,
    progress,
    elapsed
FROM system.merges
WHERE is_mutation = 0
ORDER BY elapsed DESC;

-- 4.2 查看合并任务历史
SELECT 
    database,
    table,
    partition_id,
    formatReadableSize(total_size_bytes_compressed) AS compressed_size,
    formatReadableSize(total_size_bytes_uncompressed) AS uncompressed_size,
    num_parts,
    elapsed,
    progress
FROM system.merges
WHERE finish_time >= now() - INTERVAL 24 HOUR
ORDER BY elapsed DESC
LIMIT 20;

-- 4.3 分析合并性能
SELECT 
    database,
    table,
    count() AS merge_count,
    avg(elapsed) AS avg_elapsed_sec,
    max(elapsed) AS max_elapsed_sec,
    sum(total_size_bytes_compressed) AS total_compressed_bytes,
    sum(num_parts) AS total_parts
FROM system.merges
WHERE finish_time >= now() - INTERVAL 24 HOUR
GROUP BY database, table
ORDER BY avg_elapsed_sec DESC
LIMIT 10;

6. 性能优化建议查询

-- 8.1 查找没有主键的表
SELECT 
    database,
    table,
    engine,
    total_rows,
    formatReadableSize(total_bytes) AS total_size
FROM system.tables
WHERE engine LIKE '%MergeTree%'
AND primary_key = ''
ORDER BY total_bytes DESC;

-- 8.2 查找大表但分区数少的表
SELECT 
    database,
    table,
    formatReadableSize(sum(data_uncompressed_bytes)) AS size,
    count(DISTINCT partition) AS partition_count,
    sum(rows) AS total_rows
FROM system.parts
WHERE active = 1
GROUP BY database, table
HAVING sum(data_uncompressed_bytes) > 10000000000  -- 大于10GB
AND count(DISTINCT partition) < 10  -- 分区数少于10个
ORDER BY sum(data_uncompressed_bytes) DESC;

-- 8.3 查找频繁查询但未优化的表
SELECT 
    t.database,
    t.table,
    count(q.query) AS query_count,
    avg(q.query_duration_ms)/1000 AS avg_duration_sec,
    sum(q.read_rows) AS total_read_rows
FROM system.tables t
LEFT JOIN system.query_log q ON t.database = q.databases AND t.table = q.tables
WHERE q.event_time >= now() - INTERVAL 1 HOUR
AND t.engine LIKE '%MergeTree%'
GROUP BY t.database, t.table
HAVING query_count > 10
ORDER BY avg_duration_sec DESC;

7. 用户和连接监控

-- 6.1 查看当前连接
SELECT 
    user,
    address,
    client_name,
    client_version_major,
    client_version_minor,
    client_version_patch,
    interface,
    os_user,
    client_hostname,
    query_id,
    query
FROM system.processes
ORDER BY user;

-- 6.2 查看用户查询统计
SELECT 
    user,
    count() AS query_count,
    avg(query_duration_ms)/1000 AS avg_duration_sec,
    sum(query_duration_ms)/1000 AS total_duration_sec,
    sum(read_rows) AS total_read_rows,
    sum(read_bytes) AS total_read_bytes
FROM system.query_log
WHERE event_time >= now() - INTERVAL 1 HOUR
GROUP BY user
ORDER BY total_duration_sec DESC;

-- 6.3 查看异常查询
SELECT 
    event_time,
    user,
    query,
    exception,
    query_duration_ms/1000 AS duration_sec
FROM system.query_log
WHERE exception != ''
AND event_time >= now() - INTERVAL 1 HOUR
ORDER BY event_time DESC;

8. 实时监控仪表板查询

-- 9.1 系统健康状态概览
SELECT 
    'System Health Overview' AS metric,
    count() AS value,
    'Active queries' AS description
FROM system.processes
WHERE query NOT LIKE '%system.processes%'

UNION ALL

SELECT 
    'Memory Usage (GB)' AS metric,
    round(value/1024/1024/1024, 2) AS value,
    'Current memory usage' AS description
FROM system.metrics
WHERE metric = 'MemoryResident'

UNION ALL

SELECT 
    'Query QPS' AS metric,
    value AS value,
    'Queries per second' AS description
FROM system.metrics
WHERE metric = 'Query'

UNION ALL

SELECT 
    'Merge Tasks' AS metric,
    count() AS value,
    'Active merge tasks' AS description
FROM system.merges
WHERE is_mutation = 0;

-- 9.2 性能指标趋势
SELECT 
    toStartOfMinute(event_time) AS minute,
    count() AS query_count,
    avg(query_duration_ms)/1000 AS avg_duration_sec,
    sum(read_rows) AS total_read_rows,
    sum(memory_usage) AS total_memory_usage
FROM system.query_log
WHERE event_time >= now() - INTERVAL 10 MINUTE
GROUP BY minute
ORDER BY minute DESC;
LIMIT 10;

性能监控

-- 获取内存使用情况
SELECT * FROM system.metrics WHERE metric LIKE 'Memory.%';

-- 查询常驻内存大小
SELECT value FROM system.metrics WHERE metric = 'Memory.Resident';

-- 查看正在进行的合并
SELECT 
    database,
    table,
    num_parts,
    formatReadableSize(total_size_bytes_compressed) AS total_size_bytes_compressed,
    total_size_marks,
    rows_read,
    rows_written,
    columns_written,
    memory_usage
FROM system.merges;

增删改查DDL

ClickHouse作为OLAP数据库,主要针对插入和查询进行优化,但也提供了数据更新和删除功能。

UPDATE 操作

轻量级更新(Lightweight Updates)

-- 基本更新语法(22.8+版本支持)
ALTER TABLE table_name UPDATE column = expression WHERE condition;

-- 示例:更新用户状态
ALTER TABLE users UPDATE status = 'active' WHERE last_login > today() - 30;

-- 条件更新多个字段
ALTER TABLE orders 
UPDATE 
    status = 'shipped',
    ship_date = now(),
    updated_time = now()
WHERE order_id IN (SELECT order_id FROM shipping_queue);

-- 使用函数进行更新
ALTER TABLE products 
UPDATE price = price * 1.1 
WHERE category = 'electronics' AND created_date < today() - 365;

通过INSERT配合ReplacingMergeTree实现更新

-- 创建支持更新的表
CREATE TABLE user_profiles_replacing (
    user_id UInt64,
    name String,
    email String,
    updated_time DateTime,
    version UInt64  -- 版本号,用于标识最新记录
) ENGINE = ReplacingMergeTree(version)
PARTITION BY intDiv(user_id, 1000000)
ORDER BY user_id;

-- "更新"数据(实际是插入新版本)
INSERT INTO user_profiles_replacing VALUES
(1001, 'John Updated', '[email protected]', now(), 2),
(1002, 'Jane Updated', '[email protected]', now(), 2);

-- 查询最新数据
SELECT user_id, name, email, updated_time
FROM user_profiles_replacing
FINAL
WHERE user_id IN (1001, 1002);

物化视图实现实时更新

-- 创建增量更新视图
CREATE MATERIALIZED VIEW user_profile_updates AS
SELECT 
    user_id,
    argMax(name, updated_time) AS latest_name,
    argMax(email, updated_time) AS latest_email,
    max(updated_time) AS last_updated
FROM user_profile_changes
GROUP BY user_id;

-- 插入变更记录自动更新视图
INSERT INTO user_profile_changes VALUES
(1001, 'John Latest', '[email protected]', now());

DELETE 操作

轻量级删除(Lightweight Deletes)

-- 基本删除语法(22.8+版本支持)
ALTER TABLE table_name DELETE WHERE condition;

-- 示例:删除过期数据
ALTER TABLE user_events DELETE WHERE event_date < today() - 90;

-- 条件删除
ALTER TABLE orders DELETE WHERE status = 'cancelled' AND created_date < today() - 30;

-- 批量删除
ALTER TABLE logs DELETE WHERE log_level = 'DEBUG' AND timestamp < now() - INTERVAL 7 DAY;

-- 复杂条件删除
ALTER TABLE user_sessions DELETE 
WHERE user_id IN (
    SELECT user_id FROM banned_users
) AND session_start < today() - 1;

使用TTL自动删除

-- 创建带TTL的表,自动删除过期数据
CREATE TABLE events_with_ttl (
    event_id UInt64,
    user_id UInt64,
    event_type String,
    event_time DateTime,
    event_date Date
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id)
TTL event_date + INTERVAL 90 DAY DELETE;  -- 90天后自动删除

-- 修改TTL规则
ALTER TABLE events_with_ttl MODIFY TTL event_date + INTERVAL 30 DAY DELETE;

-- 查看TTL状态
SELECT * FROM system.table_ttl_info WHERE database = 'default' AND table = 'events_with_ttl';

分区级删除(推荐方式)

-- 按分区删除(高效)
ALTER TABLE events DROP PARTITION '202401';
ALTER TABLE events DROP PARTITION tuple(toYYYYMM(toDate('2024-01-01')));

-- 查看分区信息
SELECT partition, rows, disk_name 
FROM system.parts 
WHERE table = 'events' AND active;

-- 删除多个分区
ALTER TABLE events DROP PARTITION '202401', DROP PARTITION '202402';

ALTER 表结构操作

列操作

-- 添加列
ALTER TABLE users ADD COLUMN phone String DEFAULT '';
ALTER TABLE users ADD COLUMN IF NOT EXISTS age UInt8 DEFAULT 0;

-- 删除列
ALTER TABLE users DROP COLUMN phone;
ALTER TABLE users DROP COLUMN IF EXISTS temp_column;

-- 修改列类型
ALTER TABLE users MODIFY COLUMN age UInt16;

-- 重命名列
ALTER TABLE users RENAME COLUMN old_name TO new_name;

-- 修改列默认值
ALTER TABLE users MODIFY COLUMN status DEFAULT 'pending';

-- 添加注释
ALTER TABLE users COMMENT COLUMN email 'User email address';

索引操作

-- 添加跳表索引
ALTER TABLE events ADD INDEX idx_event_type event_type TYPE bloom_filter GRANULARITY 1;
ALTER TABLE events ADD INDEX idx_user_id user_id TYPE minmax GRANULARITY 1;

-- 删除索引
ALTER TABLE events DROP INDEX idx_event_type;

-- 添加投影索引
ALTER TABLE events ADD PROJECTION user_stats (
    SELECT user_id, event_type, count()
    GROUP BY user_id, event_type
);

-- 删除投影
ALTER TABLE events DROP PROJECTION user_stats;

-- 物化投影(立即计算)
ALTER TABLE events MATERIALIZE PROJECTION user_stats;

分区操作

-- 移动分区到另一个表
ALTER TABLE events MOVE PARTITION '202401' TO TABLE events_archive;

-- 替换分区
ALTER TABLE events REPLACE PARTITION '202401' FROM TABLE events_temp;

-- 清空分区
ALTER TABLE events CLEAR COLUMN event_data IN PARTITION '202401';

-- 分离和附加分区
ALTER TABLE events DETACH PARTITION '202401';
ALTER TABLE events ATTACH PARTITION '202401';

-- 冻结分区(备份)
ALTER TABLE events FREEZE PARTITION '202401';

表级操作

-- 重命名表
RENAME TABLE old_table_name TO new_table_name;

-- 交换表名
EXCHANGE TABLES table1 AND table2;

-- 修改表引擎设置
ALTER TABLE events MODIFY SETTING merge_with_ttl_timeout = 3600;

-- 修改表注释
ALTER TABLE events MODIFY COMMENT 'Updated user events table';

数据变更最佳实践

性能考虑

-- 1. 批量操作优于频繁小操作
-- 差:频繁小删除
ALTER TABLE events DELETE WHERE event_id = 1001;
ALTER TABLE events DELETE WHERE event_id = 1002;

-- 好:批量删除
ALTER TABLE events DELETE WHERE event_id IN (1001, 1002, 1003, ...);

-- 2. 利用分区进行高效删除
-- 差:条件删除大量数据
ALTER TABLE events DELETE WHERE event_date < '2024-01-01';

-- 好:分区删除
ALTER TABLE events DROP PARTITION '202312', DROP PARTITION '202311';

监控变更操作

-- 查看正在进行的变更操作
SELECT 
    database,
    table,
    mutation_id,
    command,
    create_time,
    is_done,
    latest_failed_part
FROM system.mutations
WHERE is_done = 0;

-- 查看变更历史
SELECT 
    database,
    table,
    mutation_id,
    command,
    create_time,
    parts_to_do,
    is_done
FROM system.mutations
WHERE table = 'events'
ORDER BY create_time DESC
LIMIT 10;

-- 停止变更操作
KILL MUTATION WHERE mutation_id = 'mutation_123';

事务处理注意事项

graph TD
    A["开始数据变更"] --> B{"是否需要事务性"}
    B -->|是| C["使用ReplacingMergeTree"]
    B -->|否| D["直接ALTER操作"]
    C --> E["版本控制策略"]
    C --> F["FINAL查询"]
    D --> G["监控变更状态"]
    E --> H["应用层处理并发"]
    F --> H
    G --> H
    H --> I["完成变更"]

故障恢复

-- 如果UPDATE/DELETE操作失败,检查系统表
SELECT * FROM system.mutations WHERE is_done = 0 AND latest_failed_part != '';

-- 重试失败的变更
-- ClickHouse会自动重试,也可以手动触发
OPTIMIZE TABLE events;

-- 如果数据损坏,从备份恢复
-- 1. 停止写入
-- 2. 从冻结分区恢复
ALTER TABLE events ATTACH PARTITION '202401' FROM '/var/lib/clickhouse/shadow/1/';

数据迁移与备份

数据备份策略

分区备份


-- 冻结指定分区(创建硬链接备份)
ALTER TABLE events FREEZE PARTITION '202401';

-- 冻结整个表
ALTER TABLE events FREEZE;

-- 查看备份信息
SELECT * FROM system.backup_log ORDER BY timestamp DESC LIMIT 10;

-- 备份到指定位置
ALTER TABLE events FREEZE PARTITION '202401' WITH NAME 'backup_20240101';

逻辑备份

# 使用clickhouse-client导出
clickhouse-client --query "SELECT * FROM database.table FORMAT Native" | \
  gzip > table_backup.gz

# 导出为CSV格式
clickhouse-client --query "SELECT * FROM database.table FORMAT CSVWithNames" \
  > table_backup.csv

# 按分区导出
clickhouse-client --query "
  SELECT * FROM database.table 
  WHERE toYYYYMM(date_column) = 202401 
  FORMAT Parquet
" > partition_202401.parquet

# 并行导出多个分区
for month in {202401..202412}; do
  clickhouse-client --query "
    SELECT * FROM database.table 
    WHERE toYYYYMM(date_column) = $month 
    FORMAT Parquet
  " > "partition_$month.parquet" &
done
wait

物理备份与恢复

# 1. 停止ClickHouse服务
sudo systemctl stop clickhouse-server

# 2. 备份数据目录
rsync -av /var/lib/clickhouse/data/ /backup/clickhouse/data/
rsync -av /var/lib/clickhouse/metadata/ /backup/clickhouse/metadata/

# 3. 恢复数据
rsync -av /backup/clickhouse/data/ /var/lib/clickhouse/data/
rsync -av /backup/clickhouse/metadata/ /var/lib/clickhouse/metadata/

# 4. 修复权限
chown -R clickhouse:clickhouse /var/lib/clickhouse/

# 5. 启动服务
sudo systemctl start clickhouse-server

数据迁移方案

表间数据迁移

-- 创建目标表
CREATE TABLE events_new AS events ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (user_id, event_date);

-- 迁移数据
INSERT INTO events_new SELECT * FROM events;

-- 原子性替换
EXCHANGE TABLES events AND events_new;
DROP TABLE events_new;

跨集群迁移

-- 配置远程集群连接
-- 在config.xml中添加cluster配置

-- 创建分布式表
CREATE TABLE events_distributed AS events
ENGINE = Distributed(source_cluster, database, events, rand());

-- 迁移数据
INSERT INTO target_cluster.database.events 
SELECT * FROM events_distributed;

-- 实时同步配置
CREATE MATERIALIZED VIEW events_sync TO events_distributed AS
SELECT * FROM events;

使用clickhouse-copier进行大规模迁移

<!-- copier_config.xml -->
<yandex>
    <zookeeper>
        <node index="1">
            <host>zk1</host>
            <port>2181</port>
        </node>
    </zookeeper>
    
    <copier>
        <task_path>/clickhouse/copier/task_events</task_path>
        <task_upload_force_restart>true</task_upload_force_restart>
        
        <task>
            <cluster_pull>source_cluster</cluster_pull>
            <cluster_push>target_cluster</cluster_push>
            
            <table_pull>database.events</table_pull>
            <table_push>database.events</table_push>
            
            <engine_push>
                ENGINE = MergeTree()
                PARTITION BY toYYYYMM(event_date)
                ORDER BY (user_id, event_date)
            </engine_push>
            
            <sharding_key>user_id</sharding_key>
            <where_condition>event_date >= '2024-01-01'</where_condition>
        </task>
    </copier>
</yandex>
# 启动clickhouse-copier
clickhouse-copier --config copier_config.xml --task-path /clickhouse/copier/task_events \
  --base-dir /var/lib/clickhouse/copier --copy-fault-probability 0

在线数据同步

-- 使用Kafka引擎进行实时同步
CREATE TABLE events_kafka (
    user_id UInt64,
    event_type String,
    event_time DateTime,
    event_data String
) ENGINE = Kafka()
SETTINGS 
    kafka_broker_list = 'localhost:9092',
    kafka_topic_list = 'events_topic',
    kafka_group_name = 'clickhouse_consumer',
    kafka_format = 'JSONEachRow';

-- 创建物化视图将Kafka数据写入目标表
CREATE MATERIALIZED VIEW events_consumer TO events AS
SELECT 
    user_id,
    event_type,
    event_time,
    event_data
FROM events_kafka;

数据同步监控

同步状态监控

-- 监控物化视图状态
SELECT 
    database,
    table,
    engine,
    is_attach,
    dependencies_database,
    dependencies_table
FROM system.tables 
WHERE engine = 'MaterializedView';

-- 监控Kafka消费状态
SELECT 
    database,
    table,
    name,
    value
FROM system.asynchronous_metrics 
WHERE metric LIKE '%Kafka%';

-- 查看复制状态(ReplicatedMergeTree)
SELECT 
    database,
    table,
    engine,
    is_leader,
    can_become_leader,
    is_readonly,
    absolute_delay,
    queue_size,
    inserts_in_queue,
    merges_in_queue
FROM system.replicas;

数据一致性验证

-- 比较源表和目标表的行数
SELECT 
    'source' as table_type,
    count() as row_count,
    min(event_date) as min_date,
    max(event_date) as max_date
FROM source.events
UNION ALL
SELECT 
    'target' as table_type,
    count() as row_count,
    min(event_date) as min_date,
    max(event_date) as max_date
FROM target.events;

-- 校验数据完整性
SELECT 
    toYYYYMM(event_date) as month,
    count() as source_count
FROM source.events
GROUP BY month
ORDER BY month;

SELECT 
    toYYYYMM(event_date) as month,
    count() as target_count
FROM target.events
GROUP BY month
ORDER BY month;

批量数据处理最佳实践

大数据量插入优化

分批插入策略

-- 1. 控制批次大小(推荐100万-1000万行/批)
INSERT INTO large_table 
SELECT * FROM source_table 
WHERE id BETWEEN 1 AND 1000000;

INSERT INTO large_table 
SELECT * FROM source_table 
WHERE id BETWEEN 1000001 AND 2000000;

-- 2. 使用INSERT SELECT with LIMIT
INSERT INTO target_table 
SELECT * FROM source_table 
ORDER BY id 
LIMIT 1000000 OFFSET 0;

-- 3. 按分区并行插入
INSERT INTO events 
SELECT * FROM raw_events 
WHERE toYYYYMM(event_date) = 202401;

INSERT INTO events 
SELECT * FROM raw_events 
WHERE toYYYYMM(event_date) = 202402;

并行处理优化

# Shell脚本:并行插入多个分区
#!/bin/bash
MONTHS=(202401 202402 202403 202404 202405 202406)

for month in "${MONTHS[@]}"; do
  (
    echo "Processing month: $month"
    clickhouse-client --query "
      INSERT INTO events 
      SELECT * FROM raw_events 
      WHERE toYYYYMM(event_date) = $month
    "
    echo "Completed month: $month"
  ) &
done

# 等待所有后台任务完成
wait
echo "All parallel inserts completed"

内存和性能设置

-- 会话级别优化设置
SET max_insert_block_size = 1048576;        -- 插入块大小
SET max_insert_threads = 8;                 -- 插入线程数
SET max_memory_usage = 10000000000;         -- 单个查询最大内存(10GB)
SET max_bytes_before_external_group_by = 8000000000; -- 8GB后使用外部排序

-- 针对大数据量插入的优化
SET min_insert_block_size_rows = 1048576;   -- 最小插入行数
SET min_insert_block_size_bytes = 268435456; -- 最小插入字节数(256MB)
SET max_partitions_per_insert_block = 100;   -- 单次插入最大分区数

-- 压缩和网络优化
SET network_compression_method = 'lz4';     -- 网络压缩
SET enable_http_compression = 1;            -- HTTP压缩

数据导入性能优化

文件格式选择

-- 1. Native格式:最快的导入/导出格式
INSERT INTO table SELECT * FROM file('data.native', 'Native');

-- 2. Parquet格式:适合列式存储,压缩率高
INSERT INTO table SELECT * FROM file('data.parquet', 'Parquet');

-- 3. CSV格式:兼容性好,但较慢
INSERT INTO table SELECT * FROM file('data.csv', 'CSVWithNames');

-- 性能对比(相对速度):
-- Native: 100%
-- Parquet: 80%
-- JSONEachRow: 60% 
-- CSV: 40%

HDFS/S3大文件导入

-- 并行读取HDFS文件
INSERT INTO events 
SELECT * FROM hdfs('hdfs://cluster/path/events*.parquet', 'Parquet')
SETTINGS 
    max_threads = 16,                        -- 并行读取线程
    max_insert_threads = 8,                  -- 插入线程
    hdfs_replication = 3;                    -- HDFS副本数

-- S3文件导入优化
INSERT INTO events 
SELECT * FROM s3('https://bucket.s3.amazonaws.com/events/*.parquet', 'Parquet')
SETTINGS 
    s3_max_connections = 100,                -- S3连接数
    s3_request_timeout_ms = 30000,           -- 请求超时
    max_download_threads = 12;               -- 下载线程数

实时数据处理

流式插入模式

-- 启用异步插入(减少小批次插入的开销)
SET async_insert = 1;
SET wait_for_async_insert = 0;              -- 不等待插入完成
SET async_insert_max_data_size = 1000000;   -- 异步插入缓冲区大小
SET async_insert_busy_timeout_ms = 200;     -- 缓冲区刷新间隔

-- 批量异步插入
INSERT INTO events VALUES 
(1001, 'click', now()),
(1002, 'view', now()),
(1003, 'purchase', now());

物化视图实时聚合

-- 创建实时聚合视图
CREATE MATERIALIZED VIEW events_hourly_stats AS
SELECT 
    toStartOfHour(event_time) AS hour,
    event_type,
    count() AS event_count,
    uniq(user_id) AS unique_users
FROM events 
GROUP BY hour, event_type;

-- 增量聚合视图(只计算新数据)
CREATE MATERIALIZED VIEW events_daily_incremental AS
SELECT 
    toDate(event_time) AS date,
    event_type,
    count() AS event_count
FROM events 
WHERE event_time >= today()
GROUP BY date, event_type;

数据清理与维护

自动数据清理

-- TTL自动清理策略
CREATE TABLE events_with_cleanup (
    user_id UInt64,
    event_type String,
    event_time DateTime,
    event_date Date
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id)
TTL 
    event_date + INTERVAL 30 DAY TO DISK 'cold',    -- 30天后移到冷存储
    event_date + INTERVAL 90 DAY DELETE,            -- 90天后删除
    event_date + INTERVAL 7 DAY GROUP BY user_id SET -- 7天后聚合
        event_type = any(event_type),
        event_time = max(event_time),
        event_count = count();

-- 定期优化表结构
-- 在计划任务中运行
OPTIMIZE TABLE events FINAL;
OPTIMIZE TABLE events PARTITION '202401';

监控和告警

-- 创建监控表
CREATE TABLE data_quality_metrics (
    check_time DateTime,
    table_name String,
    metric_name String,
    metric_value Float64,
    threshold Float64,
    status String  -- 'OK', 'WARNING', 'CRITICAL'
) ENGINE = MergeTree()
ORDER BY (check_time, table_name);

-- 数据质量检查
INSERT INTO data_quality_metrics
SELECT 
    now() AS check_time,
    'events' AS table_name,
    'row_count' AS metric_name,
    count() AS metric_value,
    1000000 AS threshold,
    CASE 
        WHEN count() < 1000000 THEN 'WARNING'
        WHEN count() < 100000 THEN 'CRITICAL'
        ELSE 'OK'
    END AS status
FROM events
WHERE event_date = today();

-- 性能监控查询
SELECT 
    table,
    sum(rows) AS total_rows,
    sum(bytes_on_disk) AS disk_usage_bytes,
    count() AS part_count,
    max(modification_time) AS last_modified
FROM system.parts 
WHERE database = 'default'
GROUP BY table
ORDER BY disk_usage_bytes DESC;

故障恢复和容错

数据一致性检查

-- 检查表数据完整性
CHECK TABLE events;

-- 检查分区完整性
SELECT 
    partition,
    count() AS parts,
    sum(rows) AS total_rows,
    formatReadableSize(sum(bytes_on_disk)) AS disk_size
FROM system.parts 
WHERE table = 'events' AND active
GROUP BY partition
ORDER BY partition;

-- 检查副本同步状态(ReplicatedMergeTree)
SELECT 
    table,
    is_leader,
    absolute_delay,
    queue_size,
    inserts_in_queue,
    merges_in_queue
FROM system.replicas 
WHERE database = 'default';

自动故障恢复

#!/bin/bash
# 数据库健康检查和自动恢复脚本

check_clickhouse_health() {
    if ! clickhouse-client --query "SELECT 1" >/dev/null 2>&1; then
        echo "ClickHouse服务异常,尝试重启..."
        systemctl restart clickhouse-server
        sleep 30
    fi
}

check_replication_lag() {
    local max_delay=300  # 5分钟
    local lag=$(clickhouse-client --query "
        SELECT max(absolute_delay) 
        FROM system.replicas 
        WHERE database = 'default'
    ")
    
    if [ "$lag" -gt "$max_delay" ]; then
        echo "复制延迟过高: ${lag}秒,触发告警"
        # 发送告警通知
        send_alert "ClickHouse replication lag: ${lag}s"
    fi
}

optimize_slow_tables() {
    clickhouse-client --query "
        SELECT table, count() as parts
        FROM system.parts 
        WHERE database = 'default' AND active
        GROUP BY table 
        HAVING parts > 100
    " | while read table parts; do
        echo "优化表 $table (分区数: $parts)"
        clickhouse-client --query "OPTIMIZE TABLE $table FINAL"
    done
}

# 定期执行检查
while true; do
    check_clickhouse_health
    check_replication_lag
    optimize_slow_tables
    sleep 300  # 5分钟检查一次
done

数据备份自动化

#!/bin/bash
# 自动备份脚本

BACKUP_DIR="/backup/clickhouse"
DATE=$(date +%Y%m%d_%H%M%S)
RETENTION_DAYS=7

# 创建备份目录
mkdir -p "$BACKUP_DIR/$DATE"

# 导出重要表
TABLES=("events" "users" "products")

for table in "${TABLES[@]}"; do
    echo "备份表: $table"
    clickhouse-client --query "
        SELECT * FROM $table 
        FORMAT Native
    " | gzip > "$BACKUP_DIR/$DATE/${table}.native.gz"
    
    # 记录备份信息
    echo "$(date): 完成表 $table 备份" >> "$BACKUP_DIR/backup.log"
done

# 清理过期备份
find "$BACKUP_DIR" -type d -name "20*" -mtime +$RETENTION_DAYS -exec rm -rf {} \;

echo "备份完成: $BACKUP_DIR/$DATE"

性能基准测试

-- 插入性能测试
SELECT 
    'INSERT Performance Test' AS test_name,
    count() AS records_inserted,
    max(event_time) - min(event_time) AS time_span,
    count() / (max(event_time) - min(event_time)) AS records_per_second
FROM (
    -- 插入测试数据
    INSERT INTO test_table 
    SELECT 
        number AS id,
        ['click', 'view', 'purchase'][number % 3 + 1] AS event_type,
        now() - number AS event_time
    FROM numbers(1000000)
);

-- 查询性能测试
SELECT 
    'Query Performance Test' AS test_name,
    formatReadableQuantity(count()) AS total_records,
    round(elapsed, 3) AS query_time_seconds,
    round(count() / elapsed) AS records_per_second
FROM (
    SELECT count() FROM events 
    WHERE event_date >= today() - 30
) 
SETTINGS max_execution_time = 60;

ClickHouse文件存储

底层文件存储格式

ClickHouse数据存储架构

ClickHouse采用列式存储分块存储的方式,每个表的数据存储在多个文件中,形成了复杂但高效的存储结构。

graph TB
    subgraph "表存储结构"
        A["表目录<br/>/var/lib/clickhouse/data/<br/>database/table/"] 
        
        A --> B["分区1<br/>202401_1_1_0/"]
        A --> C["分区2<br/>202402_2_2_0/"]
        A --> D["分区3<br/>202403_3_3_0/"]
    end
    
    subgraph "单个分区目录结构"
        B --> E["数据文件"]
        B --> F["索引文件"]
        B --> G["元数据文件"]
        B --> H["校验文件"]
        
        E --> E1["user_id.bin<br/>列数据"]
        E --> E2["event_type.bin<br/>列数据"]
        E --> E3["event_time.bin<br/>列数据"]
        
        F --> F1["primary.idx<br/>主索引"]
        F --> F2["skp_idx_*.idx<br/>跳表索引"]
        
        G --> G1["columns.txt<br/>列定义"]
        G --> G2["count.txt<br/>行数"]
        G --> G3["partition.dat<br/>分区信息"]
        
        H --> H1["checksums.txt<br/>校验和"]
    end
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style E fill:#fff3e0
    style F fill:#e8f5e8
    style G fill:#fce4ec
    style H fill:#f3e5f5

数据部分(Part)命名规则

{PartitionID}_{MinBlockNum}_{MaxBlockNum}_{Level}

示例:202401_1_1_0
- 202401: 分区标识(按年月分区)
- 1: 最小块号
- 1: 最大块号 
- 0: 合并层级(0表示原始数据,数字越大表示合并层次越深)

数据文件类型详解

文件类型扩展名作用内容结构文件样例
列数据文件.bin存储列的实际数据压缩后的二进制数据块user_id.bin: 存储用户ID列的压缩数据
event_type.bin: 存储事件类型字符串数据
标记文件.mrk2存储数据块的偏移位置每个Granule的起始偏移量user_id.mrk2: 存储user_id列每8192行的偏移位置
内容:0, 4096, 8192, 12288...
主索引文件.idx主索引数据稀疏索引项,每8192行一个primary.idx: 基于ORDER BY字段的稀疏索引
内容:('2024-01-01', 1001), ('2024-01-01', 9193), ...
跳表索引.idx2/.idx3二级索引数据布隆过滤器、MinMax等skp_idx_event_type.idx: 布隆过滤器索引
skp_idx_user_id.idx2: MinMax索引 存储每块的最小/最大值
分区文件.dat分区标识信息分区值的二进制表示partition.dat: 存储分区标识符
内容:202401(对应toYYYYMM(event_date))
列定义文件columns.txt存储表结构信息列名、类型、编码信息columns.txt:
columns format version: 1
5 columns:
\event_date` Date<br/>`user_id` UInt32<br/>`event_type` String`
行数文件count.txt记录数据行数纯数字文本count.txt: 8192(表示该Part包含8192行数据)
校验文件checksums.txt数据完整性校验所有文件的校验和checksums.txt:
user_id.bin\t1234567890abcdef1234567890abcdef
user_id.mrk2\tfedcba0987654321fedcba0987654321
primary.idx\t1111222233334444555566667777888
元数据文件default_compression_codec.txt压缩算法信息表级默认压缩设置default_compression_codec.txt: CODEC(LZ4)CODEC(ZSTD(3))
版本文件format_version.txtPart格式版本数据部分的格式版本号format_version.txt: 1(Wide格式)或2(Compact格式)

文件内容详细示例

1. 列数据文件格式示例

# user_id.bin - 用户ID列的压缩二进制数据
# 原始数据:[1001, 1002, 1003, 1004, ...]
# 压缩后的二进制格式(不可直接读取)

# event_type.bin - 事件类型列的压缩数据
# 原始数据:['click', 'view', 'purchase', 'click', ...]
# 使用字典编码压缩后存储

# event_time.bin - 时间戳数据
# 原始数据:[1704096000, 1704096060, 1704096120, ...]
# 使用Delta编码压缩(存储相邻值的差值)

2. 标记文件格式示例

# user_id.mrk2 - 用户ID列的标记文件
# 每一行对应一个Granule(8192行)的偏移位置
0          # 第1个Granule在.bin文件中的起始位置
4096       # 第2个Granule的起始位置
8192       # 第3个Granule的起始位置
12288      # 第4个Granule的起始位置
...

# 每个.mrk2文件实际包含两个偏移量:
# - 在.bin文件中的偏移量
# - 在解压缩数据中的行偏移量

3. 主索引文件示例

# primary.idx - 主索引文件
# 基于ORDER BY (event_date, user_id, event_time)
# 每8192行生成一个索引条目

# 索引条目1:第0行的键值
date: 2024-01-01, user_id: 1001, time: 2024-01-01 08:00:00

# 索引条目2:第8192行的键值  
date: 2024-01-01, user_id: 5000, time: 2024-01-01 12:00:00

# 索引条目3:第16384行的键值
date: 2024-01-01, user_id: 9000, time: 2024-01-01 16:00:00

4. 跳表索引文件示例

# skp_idx_event_type.idx - 布隆过滤器索引
# 每个数据块(Granule)对应一个布隆过滤器

# Granule 1的布隆过滤器:包含 'click', 'view'
# 位数组:[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1]

# Granule 2的布隆过滤器:包含 'purchase', 'click'
# 位数组:[1,1,0,1,1,0,1,1,0,1,0,1,0,1,1,0]

# skp_idx_user_id.idx2 - MinMax索引
Granule 1: min=1001, max=1999
Granule 2: min=2000, max=2999  
Granule 3: min=3000, max=3999

5. 元数据文件示例

# columns.txt - 列定义文件
columns format version: 1
5 columns:
`event_date` Date
`event_time` DateTime  
`user_id` UInt32
`event_type` String
`event_data` String

# count.txt - 行数文件
8192

# partition.dat - 分区数据
# 二进制格式存储分区值:202401

# default_compression_codec.txt - 压缩算法
CODEC(LZ4)

# format_version.txt - 格式版本
1

6. 校验文件示例

# checksums.txt - 所有文件的校验和
user_id.bin	1234567890abcdef1234567890abcdef12345678
user_id.mrk2	fedcba0987654321fedcba0987654321fedcba09
event_type.bin	1111222233334444555566667777888899990000
event_type.mrk2	aaabbbbccccddddeeeeffffgggghhhhiiiijjjj
event_time.bin	9876543210fedcba9876543210fedcba98765432
event_time.mrk2	0000111122223333444455556666777788889999
event_data.bin	kkkklllllmmmmnnnnoooooppppqqqqrrrrsssstttt
event_data.mrk2	zzzzyyyyxxxxwwwwvvvvuuuuttttssssrrrrqqqq
primary.idx	ppppoooonnnnmmmmllllkkkkjjjjiiiihhhhgggg
partition.dat	ffffffffeeeeeeeedddddddcccccccbbbbbbba
columns.txt	1a2b3c4d5e6f7g8h9i0j1k2l3m4n5o6p7q8r9s0t
count.txt	abc123def456ghi789jkl012mno345pqr678stu9
default_compression_codec.txt	111aaa222bbb333ccc444ddd555eee666fff
format_version.txt	777ggg888hhh999iii000jjj111kkk222lll333

文件读取和查看命令

# 查看文件列表
ls -la /var/lib/clickhouse/data/default/events/202401_1_1_0/

# 查看文本文件内容
cat /var/lib/clickhouse/data/default/events/202401_1_1_0/columns.txt
cat /var/lib/clickhouse/data/default/events/202401_1_1_0/count.txt

# 查看文件大小
du -h /var/lib/clickhouse/data/default/events/202401_1_1_0/*

# 使用hexdump查看二进制文件(仅前64字节)
hexdump -C /var/lib/clickhouse/data/default/events/202401_1_1_0/user_id.bin | head -n 5

数据插入过程详解

完整的数据插入流程

flowchart TD
    subgraph INPUT ["🔌 输入处理阶段"]
        A["客户端INSERT请求"] -->|"TCP/HTTP连接+权限验证"| B["SQL解析与验证"]
        B -->|"表结构+数据类型检查"| C{"格式验证"}
        C -->|"验证失败"| ERR1["返回错误"]
    end
    
    subgraph BUFFER ["📊 缓冲处理阶段"]
        D["计算目标分区"] -->|"PARTITION BY表达式计算"| E["内存缓冲区管理"]
        E -->|"累积到max_insert_block_size"| F{"缓冲区阈值"}
        F -->|"未达到"| G["等待更多数据"]
        G --> E
    end
    
    subgraph PROCESS ["🔄 数据处理阶段"]
        H["创建新Part"] -->|"生成Part名: 202401_N_N_0"| I["数据排序"]
        I -->|"按ORDER BY字段排序"| J["列式存储分离"]
        J -->|"按列分组: user_id.bin, event_type.bin等"| K["数据压缩"]
        K -->|"LZ4/ZSTD压缩, 5-10倍压缩率"| L["文件生成"]
    end
    
    subgraph FILES ["💾 文件系统阶段"]
        M["数据文件(.bin)"] -->|"每8192行一个标记"| N["标记文件(.mrk2)"]
        N -->|"基于ORDER BY字段"| O["主索引(primary.idx)"]
        O -->|"布隆过滤器+MinMax索引"| P["跳表索引(.idx)"]
        P -->|"列信息+行数+分区标识"| Q["元数据文件"]
    end
    
    subgraph COMMIT ["🚀 提交发布阶段"]
        R["校验和计算"] -->|"MD5/SHA256校验"| S["原子性提交"]
        S -->|"临时目录重命名(移除tmp_前缀)"| T["Part可见"]
        T -->|"更新parts.json+系统表"| U["元数据更新"]
    end
    
    subgraph MAINTAIN ["🔧 后台维护阶段"]
        V["合并触发"] -->|"检查Part数量+大小阈值"| W["TTL处理"]
        W -->|"清理过期数据"| X["统计更新"]
        X -->|"更新表统计+分区统计"| Y["完成"]
    end
    
    subgraph ERROR ["⚠️ 异常处理"]
        Z["错误处理"] -->|"磁盘不足: 暂停写入"| Z1["告警"]
        Z -->|"写入失败: 清理临时文件"| Z2["回滚"]
        Z -->|"并发冲突: 重试机制"| Z3["超时处理"]
    end
    
    %% 主流程连接
    C -->|"验证通过"| D
    F -->|"达到阈值"| H
    L --> M
    Q --> R
    U --> V
    Y --> DONE["📋 数据插入完成"]
    
    %% 错误处理连接
    B -.->|"解析错误"| Z
    H -.->|"磁盘满"| Z
    S -.->|"提交失败"| Z
    
    %% 样式设置
    style INPUT fill:#E3F2FD,stroke:#1976D2,stroke-width:2px
    style BUFFER fill:#F3E5F5,stroke:#7B1FA2,stroke-width:2px
    style PROCESS fill:#FFF3E0,stroke:#F57C00,stroke-width:2px
    style FILES fill:#E8F5E8,stroke:#388E3C,stroke-width:2px
    style COMMIT fill:#FCE4EC,stroke:#C2185B,stroke-width:2px
    style MAINTAIN fill:#E0F2F1,stroke:#00695C,stroke-width:2px
    style ERROR fill:#FFEBEE,stroke:#D32F2F,stroke-width:2px

关键决策点详解

1. 数据验证关键点

-- 关键点1: 数据类型验证
-- ClickHouse会严格检查每个字段的数据类型
INSERT INTO events VALUES 
    ('2024-01-15', '2024-01-15 14:30:00', 'invalid_user_id', 'click', '{}');
    -- ❌ user_id字段期望UInt32,但提供了字符串
    
INSERT INTO events VALUES 
    ('2024-01-15', '2024-01-15 14:30:00', 12345, 'click', '{}');
    -- ✅ 数据类型正确

2. 分区计算关键点

-- 关键点2: 分区值计算
-- PARTITION BY toYYYYMM(event_date)
SELECT toYYYYMM(toDate('2024-01-15')) AS partition_value; -- 结果: 202401
SELECT toYYYYMM(toDate('2024-02-01')) AS partition_value; -- 结果: 202402

-- 查看数据会写入哪个分区
SELECT 
    toYYYYMM(event_date) AS target_partition,
    count() AS record_count
FROM (
    SELECT toDate('2024-01-15') AS event_date
) GROUP BY target_partition;

3. 缓冲区管理关键点

-- 关键点3: 缓冲区配置检查
SHOW SETTINGS LIKE '%insert%';

-- 关键配置参数
SET max_insert_block_size = 1048576;        -- 104万行触发写入
SET min_insert_block_size_rows = 1048576;   -- 最小块大小
SET min_insert_block_size_bytes = 268435456; -- 最小块字节数(256MB)
SET max_insert_threads = 4;                 -- 并行插入线程数

-- 监控当前缓冲区状态
SELECT 
    database,
    table,
    bytes,
    rows,
    format
FROM system.query_log 
WHERE query_kind = 'Insert' 
AND event_time >= now() - INTERVAL 1 HOUR
ORDER BY event_time DESC LIMIT 5;

4. Part命名关键点

-- 关键点4: Part命名规则
-- 格式: {PartitionID}_{MinBlockNum}_{MaxBlockNum}_{Level}
-- 示例: 202401_5_5_0

-- 查看Part命名和合并层级
SELECT 
    partition,
    name,
    level,  -- 0=原始数据, 数字越大合并层次越深
    rows,
    formatReadableSize(data_compressed_bytes) AS size
FROM system.parts
WHERE database = 'default' AND table = 'events'
ORDER BY partition, level, name;

5. 压缩算法选择关键点

-- 关键点5: 压缩算法决策
SHOW CREATE TABLE events;  -- 查看表的压缩配置

-- 不同列可以使用不同压缩算法
ALTER TABLE events 
MODIFY COLUMN user_id CODEC(Delta, LZ4),      -- 数值列: Delta + LZ4
MODIFY COLUMN event_type CODEC(LowCardinality, ZSTD(3)),  -- 字符串: 字典 + ZSTD
MODIFY COLUMN event_time CODEC(Delta, LZ4),   -- 时间戳: Delta压缩
MODIFY COLUMN event_data CODEC(ZSTD(1));      -- JSON数据: ZSTD压缩

-- 查看压缩效果
SELECT 
    column,
    type,
    formatReadableSize(column_data_compressed_bytes) AS compressed,
    formatReadableSize(column_data_uncompressed_bytes) AS uncompressed,
    round(column_data_uncompressed_bytes / column_data_compressed_bytes, 2) AS ratio
FROM system.parts_columns
WHERE database = 'default' AND table = 'events'
AND name = '202401_1_1_0';

6. 索引构建关键点

-- 关键点6: 索引构建过程
-- 主索引构建
SELECT 
    name,
    marks,  -- 索引条目数量
    formatReadableSize(primary_key_bytes_in_memory) AS pk_memory,
    rows
FROM system.parts
WHERE database = 'default' AND table = 'events';

-- 跳表索引构建检查
SELECT 
    table,
    name AS index_name,
    type,
    expression,
    granularity
FROM system.data_skipping_indices
WHERE database = 'default' AND table = 'events';

7. 原子性提交关键点

# 关键点7: 原子性提交过程
# 可以通过inotify监控目录重命名过程
inotifywait -m -r -e moved_to /var/lib/clickhouse/data/default/events/

# 输出示例:
# /var/lib/clickhouse/data/default/events/ MOVED_TO tmp_202401_6_6_0 -> 202401_6_6_0
# 表示临时目录重命名为正式Part目录,此时数据提交完成

8. 合并调度关键点

-- 关键点8: 合并调度决策
-- 查看当前合并状态
SELECT 
    database,
    table,
    command,
    num_parts,           -- 参与合并的Part数量
    result_part_name,    -- 合并后的Part名称
    total_size_bytes_compressed,
    progress,
    elapsed
FROM system.merges
WHERE table = 'events'
ORDER BY elapsed DESC;

-- 手动触发合并
OPTIMIZE TABLE events PARTITION '202401' FINAL;

-- 查看合并设置
SELECT 
    name,
    value
FROM system.merge_tree_settings
WHERE name LIKE '%merge%'
ORDER BY name;

具体文件生成过程

当插入一条数据时,会在文件系统中生成以下文件:

# 在ClickHouse数据目录中的文件结构
/var/lib/clickhouse/data/default/events/202401_5_5_0/
├── user_id.bin          # 用户ID列的压缩数据
├── user_id.mrk2         # 用户ID列的标记文件
├── event_type.bin       # 事件类型列的压缩数据
├── event_type.mrk2      # 事件类型列的标记文件
├── event_time.bin       # 事件时间列的压缩数据
├── event_time.mrk2      # 事件时间列的标记文件
├── event_data.bin       # 事件数据列的压缩数据
├── event_data.mrk2      # 事件数据列的标记文件
├── primary.idx          # 主索引文件
├── partition.dat        # 分区标识符
├── count.txt            # 行数信息
├── columns.txt          # 列定义信息
└── checksums.txt        # 所有文件的校验和

插入操作示例和文件变化

-- 示例:插入一条用户事件数据
INSERT INTO events (
    event_date, event_time, user_id, event_type, event_data
) VALUES (
    '2024-01-15', '2024-01-15 14:30:00', 12345, 'click', '{"page": "home"}'
);

-- 监控数据部分变化
SELECT 
    database, table, partition, name,
    formatReadableSize(bytes_on_disk) as size_on_disk,
    rows, level, modification_time
FROM system.parts
WHERE database = 'default' AND table = 'events'
ORDER BY modification_time DESC LIMIT 5;

-- 查看具体文件列表
SELECT 
    name, column, type,
    formatReadableSize(column_data_compressed_bytes) as compressed_size,
    formatReadableSize(column_data_uncompressed_bytes) as uncompressed_size,
    rows
FROM system.parts_columns
WHERE database = 'default' AND table = 'events'
AND name LIKE '202401_%' 
ORDER BY column_position;

文件变化监控

# 使用inotify监控文件变化
# 当插入数据时,会看到以下文件创建顺序:

1. 创建新的Part目录
   CREATE,ISDIR 202401_5_5_0

2. 生成列数据文件
   CREATE user_id.bin
   CREATE event_type.bin  
   CREATE event_time.bin
   CREATE event_data.bin

3. 生成标记文件
   CREATE user_id.mrk2
   CREATE event_type.mrk2
   CREATE event_time.mrk2
   CREATE event_data.mrk2

4. 生成索引文件
   CREATE primary.idx
   CREATE partition.dat

5. 生成元数据文件
   CREATE columns.txt
   CREATE count.txt
   CREATE checksums.txt  # 最后创建,表示数据写入完成

ClickHouse 查询优化

查询执行原理

查询执行流程

graph TD
    A[SQL查询] --> B[查询解析]
    B --> C[语法分析]
    C --> D[查询优化]
    D --> E[执行计划生成]
    E --> F[数据读取]
    F --> G[数据处理]
    G --> H[结果返回]
    
    I[索引查找] --> F
    J[分区裁剪] --> F
    K[向量化执行] --> G
    
    style A fill:#e1f5fe
    style D fill:#f3e5f5
    style F fill:#fff3e0
    style G fill:#e8f5e8

查询优化策略

优化策略说明实现方式
分区裁剪只读取相关分区根据WHERE条件过滤分区
索引跳表利用稀疏索引快速定位基于ORDER BY字段的索引
列裁剪只读取需要的列SELECT字段优化
谓词下推在数据源处过滤将过滤条件下推到存储层
向量化执行批量处理数据利用SIMD指令优化

索引优化

ClickHouse索引创建流程图

graph TD
    A["开始创建索引"] --> B["分析查询模式"]
    B --> C{"选择索引类型"}
    
    C -->|"主要索引"| D["稀疏索引"]
    C -->|"二级索引"| E["跳表索引"]
    C -->|"预聚合"| F["投影索引"]
    
    D --> D1["设计ORDER BY键"]
    D1 --> D2["配置index_granularity"]
    D2 --> D3["生成主索引文件"]
    
    E --> E1["选择索引算法"]
    E1 --> E2["设置GRANULARITY"]
    E2 --> E3["构建跳表结构"]
    
    F --> F1["定义预聚合逻辑"]
    F1 --> F2["指定排序键"]
    F2 --> F3["物化投影数据"]
    
    D3 --> G["索引创建完成"]
    E3 --> G
    F3 --> G
    
    G --> H["更新元数据"]
    H --> I["索引可用"]
    
    style A fill:#e1f5fe
    style C fill:#f3e5f5
    style D fill:#fff3e0
    style E fill:#e8f5e8
    style F fill:#fce4ec
    style I fill:#e1f5fe

索引使用流程

graph TD
    A["查询请求"] --> B["查询解析"]
    B --> C["分区裁剪"]
    C --> D{"是否使用主索引?"}
    
    D -->|"是"| E["稀疏索引查找"]
    D -->|"否"| F["检查跳表索引"]
    
    E --> E1["读取索引文件"]
    E1 --> E2["定位数据块范围"]
    E2 --> E3["缩小扫描范围"]
    E3 --> G["读取数据块"]
    
    F --> F1{"是否有跳表索引?"}
    F1 -->|"是"| F2["布隆过滤器检查"]
    F1 -->|"否"| H["全表扫描"]
    
    F2 --> F3{"过滤器匹配?"}
    F3 -->|"是"| G
    F3 -->|"否"| I["跳过数据块"]
    
    G --> J["检查投影索引"]
    J --> J1{"是否有匹配投影?"}
    J1 -->|"是"| J2["使用预聚合数据"]
    J1 -->|"否"| J3["处理原始数据"]
    
    J2 --> K["返回结果"]
    J3 --> K
    H --> K
    I --> K
    
    style A fill:#e1f5fe
    style D fill:#f3e5f5
    style E fill:#fff3e0
    style F fill:#e8f5e8
    style J fill:#fce4ec
    style K fill:#e1f5fe

索引工作原理详解

1. 稀疏索引工作机制

graph LR
    subgraph "稀疏索引结构"
        A["索引条目1<br/>值:2023-01-01<br/>偏移:0"] 
        B["索引条目2<br/>值:2023-01-15<br/>偏移:8192"]
        C["索引条目3<br/>值:2023-02-01<br/>偏移:16384"]
    end
    
    subgraph "数据块"
        D["数据块1<br/>(0-8191行)<br/>2023-01-01~2023-01-14"]
        E["数据块2<br/>(8192-16383行)<br/>2023-01-15~2023-01-31"]
        F["数据块3<br/>(16384-24575行)<br/>2023-02-01~2023-02-15"]
    end
    
    A -.-> D
    B -.-> E
    C -.-> F
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style C fill:#fff3e0
    style D fill:#e8f5e8
    style E fill:#e8f5e8
    style F fill:#e8f5e8

稀疏索引原理

-- 索引粒度设置
CREATE TABLE events (
    event_date Date,
    event_time DateTime,
    user_id UInt32,
    event_type String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, event_time, user_id)
SETTINGS index_granularity = 8192; -- 每8192行一个索引条目

2. 跳表索引工作机制

graph TD
    A["查询: event_type = 'click'"] --> B["检查布隆过滤器"]
    
    B --> C{"数据块1<br/>过滤器"}
    B --> D{"数据块2<br/>过滤器"}
    B --> E{"数据块3<br/>过滤器"}
    
    C -->|"可能包含"| F["扫描数据块1"]
    C -->|"肯定不包含"| G["跳过数据块1"]
    
    D -->|"可能包含"| H["扫描数据块2"]
    D -->|"肯定不包含"| I["跳过数据块2"]
    
    E -->|"可能包含"| J["扫描数据块3"]
    E -->|"肯定不包含"| K["跳过数据块3"]
    
    F --> L["合并结果"]
    H --> L
    J --> L
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style C fill:#fff3e0
    style D fill:#fff3e0
    style E fill:#fff3e0
    style L fill:#e1f5fe

布隆过滤器原理详解

什么是布隆过滤器: 布隆过滤器是一种概率型数据结构,用于快速判断一个元素是否可能存在于集合中。它的核心特点是:

  • 无误报(False Negative):如果过滤器说元素不存在,那么该元素一定不存在
  • 有误报(False Positive):如果过滤器说元素存在,那么该元素可能存在
  • 空间效率高:使用位数组存储,空间占用极小
  • 查询速度快:时间复杂度为 O(k),k为哈希函数个数

布隆过滤器工作原理

graph LR
    subgraph "布隆过滤器构建过程"
        A["元素: 'click'"] --> B["哈希函数1<br/>hash1('click') = 3"]
        A --> C["哈希函数2<br/>hash2('click') = 7"]
        A --> D["哈希函数3<br/>hash3('click') = 12"]
        
        B --> E["位数组"]
        C --> E
        D --> E
        
        E --> F["0|0|0|1|0|0|0|1|0|0|0|0|1|0|0|0"]
        F --> G["设置位置3,7,12为1"]
    end
    
    subgraph "查询过程"
        H["查询: 'view'"] --> I["计算哈希值"]
        I --> J["hash1('view') = 2"]
        I --> K["hash2('view') = 5"]
        I --> L["hash3('view') = 12"]
        
        J --> M["检查位置2"]
        K --> N["检查位置5"]
        L --> O["检查位置12"]
        
        M --> P{"位置2 = 0"}
        P --> Q["元素不存在"]
    end
    
    style A fill:#e1f5fe
    style E fill:#f3e5f5
    style H fill:#fff3e0
    style Q fill:#ffebee

布隆过滤器关键参数

参数说明影响推荐值
m(位数组大小)位数组的长度越大误报率越低,内存占用越多根据元素数量动态调整
k(哈希函数个数)使用的哈希函数数量过多或过少都会影响性能k = (m/n) * ln(2)
n(元素个数)预期插入的元素数量影响位数组大小设计根据数据块大小估算
p(误报率)False Positive 概率越低需要越大的位数组0.01-0.1(1%-10%)

误报率计算公式

p = (1 - e^(-kn/m))^k

其中:
- p: 误报率
- k: 哈希函数个数
- n: 已插入元素个数
- m: 位数组大小
- e: 自然常数

ClickHouse中的布隆过滤器实现

1. 布隆过滤器索引创建

-- 基础布隆过滤器索引
ALTER TABLE events ADD INDEX idx_event_type event_type TYPE bloom_filter GRANULARITY 1;

-- 带参数的布隆过滤器(指定误报率)
ALTER TABLE events ADD INDEX idx_user_id user_id TYPE bloom_filter(0.01) GRANULARITY 1;

-- 多字段布隆过滤器
ALTER TABLE events ADD INDEX idx_user_event user_id, event_type TYPE bloom_filter GRANULARITY 2;

-- 查看索引创建进度
SELECT 
    table,
    name,
    type,
    granularity
FROM system.data_skipping_indices
WHERE table = 'events';

2. 布隆过滤器参数配置

-- 创建表时指定布隆过滤器参数
CREATE TABLE events_optimized (
    event_date Date,
    user_id UInt32,
    event_type LowCardinality(String),  -- 使用LowCardinality优化
    session_id String,
    event_data String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id)
SETTINGS 
    index_granularity = 8192,
    -- 布隆过滤器相关设置
    bloom_filter_false_positive_rate = 0.01,  -- 1%误报率
    max_bloom_filter_size = 1048576;           -- 最大1MB

-- 添加多个布隆过滤器索引
ALTER TABLE events_optimized ADD INDEX idx_event_type event_type TYPE bloom_filter(0.005) GRANULARITY 1;
ALTER TABLE events_optimized ADD INDEX idx_session session_id TYPE bloom_filter(0.01) GRANULARITY 2;
ALTER TABLE events_optimized ADD INDEX idx_combined user_id, event_type TYPE bloom_filter(0.02) GRANULARITY 1;

3. 布隆过滤器使用场景

-- ✅ 适合使用布隆过滤器的查询
-- 1. 等值查询
SELECT * FROM events WHERE event_type = 'click';  -- 布隆过滤器生效
SELECT * FROM events WHERE user_id = 12345;       -- 布隆过滤器生效

-- 2. IN查询
SELECT * FROM events WHERE event_type IN ('click', 'view');  -- 布隆过滤器生效
SELECT * FROM events WHERE user_id IN (123, 456, 789);       -- 布隆过滤器生效

-- 3. 多字段组合查询
SELECT * FROM events WHERE user_id = 123 AND event_type = 'click';  -- 复合布隆过滤器生效

-- ❌ 不适合使用布隆过滤器的查询
-- 1. 范围查询
SELECT * FROM events WHERE user_id > 1000;        -- 布隆过滤器无效
SELECT * FROM events WHERE user_id BETWEEN 100 AND 200;  -- 布隆过滤器无效

-- 2. 模糊查询
SELECT * FROM events WHERE event_type LIKE 'cli%'; -- 布隆过滤器无效

-- 3. 函数查询
SELECT * FROM events WHERE lower(event_type) = 'click';  -- 布隆过滤器无效

4. 布隆过滤器性能监控

-- 查看索引使用统计
SELECT 
    table,
    name,
    type,
    granularity,
    expression
FROM system.data_skipping_indices
WHERE database = 'default' AND table = 'events';

-- 监控查询是否使用了跳表索引
SELECT 
    query,
    query_duration_ms,
    read_rows,
    read_bytes,
    result_rows
FROM system.query_log
WHERE 
    event_time >= now() - INTERVAL 1 HOUR
    AND query LIKE '%events%'
    AND query LIKE '%event_type%'
ORDER BY event_time DESC
LIMIT 10;

-- 分析跳过的数据块数量
SELECT 
    formatReadableQuantity(sum(marks)) as total_marks,
    formatReadableQuantity(sum(marks_read)) as marks_read,
    round(100 * sum(marks_read) / sum(marks), 2) as read_percentage
FROM system.query_log
WHERE 
    event_time >= now() - INTERVAL 1 HOUR
    AND type = 'QueryFinish'
    AND query LIKE '%events%';

布隆过滤器优化策略

1. 误报率调优

-- 根据数据特征调整误报率
-- 高基数字段(如用户ID):使用较低误报率
ALTER TABLE events ADD INDEX idx_user_id user_id TYPE bloom_filter(0.001) GRANULARITY 1;

-- 低基数字段(如状态):可以使用较高误报率
ALTER TABLE events ADD INDEX idx_status status TYPE bloom_filter(0.05) GRANULARITY 1;

-- 超高基数字段(如UUID):需要极低误报率
ALTER TABLE events ADD INDEX idx_session session_id TYPE bloom_filter(0.0001) GRANULARITY 1;

2. GRANULARITY参数优化

-- GRANULARITY = 1:每个数据块都有独立的布隆过滤器(精度最高,开销最大)
ALTER TABLE events ADD INDEX idx_precise event_type TYPE bloom_filter GRANULARITY 1;

-- GRANULARITY = 2:每2个数据块共用一个布隆过滤器(平衡精度和开销)
ALTER TABLE events ADD INDEX idx_balanced event_type TYPE bloom_filter GRANULARITY 2;

-- GRANULARITY = 4:每4个数据块共用一个布隆过滤器(开销最小,精度较低)
ALTER TABLE events ADD INDEX idx_efficient event_type TYPE bloom_filter GRANULARITY 4;

3. 组合索引策略

-- 为常见查询组合创建复合布隆过滤器
ALTER TABLE events ADD INDEX idx_user_type_date 
    user_id, event_type, toDate(event_time) 
    TYPE bloom_filter(0.01) GRANULARITY 1;

-- 避免创建过多单字段索引,合并为复合索引
-- ❌ 不推荐:多个单字段索引
-- ALTER TABLE events ADD INDEX idx_user user_id TYPE bloom_filter;
-- ALTER TABLE events ADD INDEX idx_type event_type TYPE bloom_filter;
-- ALTER TABLE events ADD INDEX idx_date event_date TYPE bloom_filter;

-- ✅ 推荐:一个复合索引
ALTER TABLE events ADD INDEX idx_main_query 
    user_id, event_type, event_date 
    TYPE bloom_filter(0.01) GRANULARITY 1;

4. 布隆过滤器维护

-- 删除无效的布隆过滤器索引
ALTER TABLE events DROP INDEX idx_unused_index;

-- 重建布隆过滤器索引(数据特征发生变化时)
ALTER TABLE events DROP INDEX idx_event_type;
ALTER TABLE events ADD INDEX idx_event_type event_type TYPE bloom_filter(0.005) GRANULARITY 1;

-- 物化跳表索引(确保所有数据块都有索引)
ALTER TABLE events MATERIALIZE INDEX idx_event_type;

-- 检查索引构建状态
SELECT 
    name,
    type,
    status
FROM system.mutations
WHERE table = 'events'
ORDER BY create_time DESC;

索引优化技巧

-- 1. 合理设计ORDER BY
-- 好的设计:查询条件字段在前
ORDER BY (user_id, event_date, event_time)

-- 2. 使用跳表索引
ALTER TABLE events ADD INDEX idx_event_type event_type TYPE bloom_filter GRANULARITY 1;

-- 3. 投影索引
ALTER TABLE events ADD PROJECTION proj_user_events (
    SELECT user_id, event_date, event_type
    ORDER BY user_id, event_date
);

3. 投影索引工作机制

graph TB
    A["原始查询<br/>SELECT user_id, count()<br/>FROM events<br/>WHERE user_id = 123<br/>GROUP BY user_id"] 
    
    A --> B{"是否有匹配的投影?"}
    
    B -->|"是"| C["投影索引匹配"]
    B -->|"否"| D["原始表查询"]
    
    C --> C1["读取预聚合数据"]
    C1 --> C2["直接返回结果"]
    
    D --> D1["扫描原始数据"]
    D1 --> D2["执行聚合计算"]
    D2 --> D3["返回计算结果"]
    
    subgraph "投影索引数据"
        E["user_id | event_count"]
        F["123 | 1000"]
        G["456 | 800"]
        H["789 | 1200"]
    end
    
    C1 -.-> E
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style C fill:#e8f5e8
    style D fill:#ffebee
    style C2 fill:#e1f5fe
    style D3 fill:#fff3e0

索引性能对比

不同索引类型的性能特征

索引类型查询性能存储开销维护成本适用场景
稀疏索引★★★★☆★★★★★★★★★★范围查询、排序
布隆过滤器★★★☆☆★★★★☆★★★☆☆等值过滤
MinMax索引★★☆☆☆★★★★★★★★★☆数值范围过滤
投影索引★★★★★★★☆☆☆★★☆☆☆特定聚合查询

索引选择决策流程

graph TD
    A["分析查询模式"] --> B{"查询类型"}
    
    B -->|"范围查询"| C["优化ORDER BY"]
    B -->|"等值过滤"| D["布隆过滤器索引"]
    B -->|"聚合查询"| E["投影索引"]
    B -->|"数值范围"| F["MinMax索引"]
    
    C --> C1["将查询字段放在<br/>ORDER BY前面"]
    D --> D1["CREATE INDEX<br/>TYPE bloom_filter"]
    E --> E1["CREATE PROJECTION<br/>with GROUP BY"]
    F --> F1["CREATE INDEX<br/>TYPE minmax"]
    
    C1 --> G["测试性能"]
    D1 --> G
    E1 --> G
    F1 --> G
    
    G --> H{"性能满足要求?"}
    H -->|"是"| I["部署到生产"]
    H -->|"否"| J["调整索引策略"]
    J --> A
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style G fill:#fff3e0
    style I fill:#e8f5e8

JOIN

flowchart TD
    subgraph query_process["JOIN查询执行流程"]
        A["SQL解析"] --> B["JOIN类型确定"]
        B --> C{"JOIN类型"}
        
        C -->|"INNER JOIN"| D1["内连接处理"]
        C -->|"LEFT JOIN"| D2["左连接处理"]
        C -->|"RIGHT JOIN"| D3["右连接处理"]
        C -->|"FULL JOIN"| D4["全连接处理"]
        
        D1 --> E["JOIN策略选择"]
        D2 --> E
        D3 --> E
        D4 --> E
        
        E --> F{"JOIN策略"}
        
        F -->|"Hash Join"| G1["构建哈希表"]
        F -->|"Merge Join"| G2["排序合并"]
        F -->|"Direct Join"| G3["直接连接"]
        F -->|"Grace Hash Join"| G4["分区哈希连接"]
        
        G1 --> H1["小表构建哈希表"]
        H1 --> H2["大表探测匹配"]
        H2 --> K["结果集生成"]
        
        G2 --> I1["对JOIN键排序"]
        I1 --> I2["合并匹配行"]
        I2 --> K
        
        G3 --> J1["直接逐行匹配"]
        J1 --> K
        
        G4 --> L1["分区哈希处理"]
        L1 --> L2["分区内哈希连接"]
        L2 --> K
    end
    
    classDef parse fill:#f9f,stroke:#333,stroke-width:1px
    classDef join_type fill:#bbf,stroke:#333,stroke-width:1px
    classDef strategy fill:#bfb,stroke:#333,stroke-width:1px
    classDef execution fill:#fbb,stroke:#333,stroke-width:1px
    
    class A parse
    class B,C,D1,D2,D3,D4 join_type
    class E,F,G1,G2,G3,G4 strategy
    class H1,H2,I1,I2,J1,K,L1,L2 execution

JOIN执行策略:

  1. Hash Join: 适用于一个表较小的情况

    • 将小表完全加载到内存中构建哈希表
    • 扫描大表并在哈希表中查找匹配项
    • 内存占用高但速度快
  2. Merge Join: 适用于两个表都按JOIN键排序的情况

    • 同时顺序扫描两个已排序的表
    • 合并匹配的行
    • 效率高但要求表已排序
  3. Grace Hash Join: 适用于两个大表JOIN的情况

    • 将数据分区处理,减少内存压力
    • 每个分区内执行哈希连接
    • 适合大数据量场景

ClickHouse JOIN类型详细对比表

JOIN类型语法工作原理适用场景性能特点内存消耗注意事项
INNER JOINSELECT * FROM A INNER JOIN B ON A.key = B.key仅返回两表中匹配的行需要严格匹配两表数据中等,取决于JOIN策略中等空值不会匹配
LEFT JOINSELECT * FROM A LEFT JOIN B ON A.key = B.key返回左表全部行,右表不匹配则为NULL左表为主表,需保留所有记录略低于INNER JOIN中等右表不匹配时填充NULL
RIGHT JOINSELECT * FROM A RIGHT JOIN B ON A.key = B.key返回右表全部行,左表不匹配则为NULL右表为主表,需保留所有记录略低于INNER JOIN中等左表不匹配时填充NULL
FULL JOINSELECT * FROM A FULL JOIN B ON A.key = B.key返回两表全部行,不匹配则为NULL需要两表所有数据,包括不匹配部分较低,需处理所有数据较高不匹配时填充NULL
CROSS JOINSELECT * FROM A CROSS JOIN B返回两表的笛卡尔积需要两表所有可能组合非常低,结果集巨大极高结果行数=A表行数×B表行数
ASOF JOINSELECT * FROM A ASOF JOIN B ON A.key = B.key AND A.t >= B.t按时间序列最近匹配时间序列数据合并较高,需要表按时间排序中等要求JOIN键包含时间字段
ANY JOINSELECT * FROM A ANY JOIN B ON A.key = B.key每个左表值匹配右表第一个匹配项只需右表任意一个匹配值高,提前终止匹配结果不确定,取决于数据顺序
ALL JOINSELECT * FROM A ALL JOIN B ON A.key = B.key返回所有可能的匹配组合需要所有匹配组合较低,类似INNER JOIN较高可能产生大量重复数据
SEMI JOINSELECT * FROM A WHERE A.key IN (SELECT key FROM B)左表中匹配右表的行(不重复)筛选存在于另一表的记录较高,结果集小较低仅返回左表数据
ANTI JOINSELECT * FROM A WHERE A.key NOT IN (SELECT key FROM B)左表中不匹配右表的行筛选不存在于另一表的记录较高,结果集小较低仅返回左表数据

JOIN执行策略性能对比

JOIN策略工作原理适用场景优点缺点内存消耗性能表现
Hash Join将小表构建哈希表,大表探测匹配一个表明显小于另一个表速度快,适合非排序数据内存消耗大高(与小表大小成正比)小表足够小时性能最佳
Merge Join按JOIN键排序后合并匹配行两表已按JOIN键排序内存消耗低,适合大表需要预排序,随机访问性能差低(仅需缓冲区)两表已排序时性能最佳
Nested Loop Join嵌套循环遍历两表极小表JOIN或有索引实现简单性能极差,O(n²)复杂度极低仅适用于极小数据集
Grace Hash Join分区哈希,减少内存压力两个大表JOIN可处理大表,内存友好实现复杂,有I/O开销中等(可控)大表JOIN时较平衡
Broadcast Join小表广播到所有节点分布式环境下小表JOIN大表减少数据传输,并行度高要求小表能复制到所有节点各节点都需存储小表分布式环境下小表JOIN大表时最佳
Shuffle Join按JOIN键重分区后本地JOIN分布式环境下大表JOIN大表可处理任意大小表网络传输开销大中等(分布式)大表JOIN大表且内存受限时适用

JOIN策略选择逻辑流程

flowchart TD
    start["开始JOIN策略选择"] --> check_settings{"检查用户设置"}
    
    check_settings -->|"已指定join_algorithm"| use_specified["使用指定算法"]
    
    check_settings -->|"未指定算法"| check_tables{"分析表大小和特征"}
    
    check_tables -->|"一个表很小(<max_rows_in_join_memory)"| check_hash_settings{"检查哈希JOIN设置"}
    check_hash_settings -->|"允许哈希JOIN"| use_hash["使用Hash Join"]
    check_hash_settings -->|"禁用哈希JOIN"| fallback_merge["退化为Merge Join"]
    
    check_tables -->|"两表都很大"| check_keys{"检查JOIN键特性"}
    
    check_keys -->|"JOIN键已排序"| use_merge["使用Merge Join"]
    check_keys -->|"JOIN键未排序"| check_memory{"检查可用内存"}
    
    check_memory -->|"内存充足"| use_hash_large["使用Hash Join"]
    check_memory -->|"内存不足"| check_dist{"是否分布式环境"}
    
    check_dist -->|"是"| use_shuffle["使用Shuffle Join"]
    check_dist -->|"否"| use_grace["使用Grace Hash Join"]
    
    check_tables -->|"特殊JOIN类型"| check_special{"JOIN类型检查"}
    
    check_special -->|"ASOF JOIN"| use_asof["使用特化的ASOF算法"]
    check_special -->|"CROSS JOIN"| use_nested["使用Nested Loop"]
    check_special -->|"SEMI/ANTI JOIN"| use_hash_special["优先使用Hash算法"]
    
    %% 分布式环境特殊处理
    check_dist_table{"检查分布式表"}
    check_tables -->|"包含分布式表"| check_dist_table
    
    check_dist_table -->|"小表可复制到所有节点"| use_broadcast["使用Broadcast Join"]
    check_dist_table -->|"两表都很大"| use_shuffle_dist["使用Shuffle Join"]
    
    %% 内存限制处理
    check_memory_limit{"检查max_memory_usage"}
    check_tables -->|"内存限制严格"| check_memory_limit
    
    check_memory_limit -->|"可能超出内存限制"| use_grace_mem["使用Grace Hash Join"]
    check_memory_limit -->|"内存限制宽松"| proceed_normal["按常规逻辑选择"]
    
    %% 设置影响
    settings["JOIN相关设置:
    - join_algorithm
    - max_rows_in_join
    - join_use_nulls
    - default_max_bytes_in_join
    - join_any_take_last_row
    - max_bytes_in_distinct"]
    
    check_settings -.-> settings
    
    %% 性能考量
    performance["性能考量因素:
    - 表大小比例
    - JOIN键选择
    - 内存限制
    - 网络带宽(分布式)
    - 排序状态"]
    
    check_tables -.-> performance
    
    classDef start fill:#f9f,stroke:#333,stroke-width:1px
    classDef decision fill:#bbf,stroke:#333,stroke-width:1px
    classDef action fill:#bfb,stroke:#333,stroke-width:1px
    classDef info fill:#ffe,stroke:#333,stroke-width:1px
    
    class start start
    class check_settings,check_tables,check_keys,check_memory,check_dist,check_special,check_dist_table,check_memory_limit,check_hash_settings decision
    class use_hash,use_merge,use_hash_large,use_shuffle,use_grace,use_asof,use_nested,use_hash_special,use_broadcast,use_shuffle_dist,use_grace_mem,proceed_normal,use_specified,fallback_merge action
    class settings,performance info

ClickHouse JOIN策略选择因素:

  1. 表大小

    • 小表+大表:优先选择Hash Join
    • 两个大表:考虑Grace Hash Join或Shuffle Join
  2. 内存限制

    • 内存充足:Hash Join性能最佳
    • 内存受限:考虑Merge Join或Grace Hash Join
  3. JOIN键特性

    • JOIN键已排序:Merge Join效率高
    • JOIN键基数低:Hash Join效率高
    • JOIN键分布不均:考虑特殊优化
  4. 分布式环境考量

    • 小表可广播:Broadcast Join减少网络传输
    • 大表JOIN大表:Shuffle Join减少内存压力
  5. 特殊JOIN类型的算法选择

    • ASOF JOIN:专用时间序列JOIN算法
    • CROSS JOIN:通常使用Nested Loop
    • SEMI/ANTI JOIN:优先使用Hash算法

ClickHouse JOIN优化技巧

  1. 使用字典代替JOIN:对于维度表,使用字典可显著提升性能

    -- 使用字典替代JOIN
    SELECT 
        e.*,
        dictGet('user_dict', 'name', e.user_id) AS user_name
    FROM events e;
    
  2. JOIN顺序优化:小表放在右侧(构建表),大表放在左侧(探测表)

    -- 优化JOIN顺序
    SELECT * FROM large_table l JOIN small_table s ON l.key = s.key;
    
  3. 分布式JOIN优化:使用全局表减少数据传输

    -- 创建全局表用于JOIN
    CREATE TABLE dimension_table_global ON CLUSTER cluster_name
    AS dimension_table
    ENGINE = ReplicatedMergeTree(...)
    ...
    SETTINGS storage_policy = 'jbod';
    
  4. JOIN键选择:使用基数低、分布均匀的列作为JOIN键

    -- 使用低基数列作为JOIN键
    SELECT * FROM table1 t1 JOIN table2 t2 ON t1.category_id = t2.id; -- 好
    -- 避免使用高基数列
    SELECT * FROM table1 t1 JOIN table2 t2 ON t1.unique_id = t2.unique_id; -- 差
    
  5. JOIN相关设置优化

    -- 设置JOIN内存限制
    SET max_bytes_in_join = 10000000000;
    
    -- 指定JOIN算法
    SET join_algorithm = 'hash';  -- 可选: 'hash', 'partial_merge', 'auto'
    
    -- 限制JOIN中的行数
    SET max_rows_in_join = 1000000;
    

GROUP BY

flowchart TD
    subgraph groupby_process["GROUP BY查询执行流程"]
        A["SQL解析"] --> B["执行计划生成"]
        B --> C["数据读取"]
        
        C --> D{"执行策略选择"}
        
        D -->|"Hash聚合"| E1["创建哈希表"]
        D -->|"排序聚合"| E2["数据排序"]
        D -->|"两级聚合"| E3["分布式预聚合"]
        
        E1 --> F1["按GROUP BY键哈希"]
        F1 --> F2["增量更新聚合结果"]
        F2 --> H["生成结果集"]
        
        E2 --> G1["按GROUP BY键排序"]
        G1 --> G2["顺序扫描合并相同键"]
        G2 --> H
        
        E3 --> I1["本地预聚合"]
        I1 --> I2["发送到协调节点"]
        I2 --> I3["最终聚合"]
        I3 --> H
        
        H --> J["应用HAVING过滤"]
        J --> K["排序结果"]
        K --> L["返回结果"]
    end
    
    classDef parse fill:#f9f,stroke:#333,stroke-width:1px
    classDef strategy fill:#bbf,stroke:#333,stroke-width:1px
    classDef execution fill:#bfb,stroke:#333,stroke-width:1px
    classDef result fill:#fbb,stroke:#333,stroke-width:1px
    
    class A,B parse
    class C,D,E1,E2,E3 strategy
    class F1,F2,G1,G2,I1,I2,I3 execution
    class H,J,K,L result

GROUP BY执行策略:

  1. Hash聚合: 最常用的GROUP BY实现方式

    • 为每个分组键创建哈希表条目
    • 增量更新聚合值(如SUM、COUNT等)
    • 内存占用与分组键数量成正比
  2. 排序聚合: 适用于结果需要排序或内存受限的情况

    • 先按GROUP BY键排序数据
    • 顺序扫描并合并相同键的记录
    • 内存效率高但可能较慢
  3. 两级聚合: 分布式查询中使用

    • 在各分片上执行本地预聚合
    • 将中间结果发送到协调节点
    • 协调节点执行最终聚合
    • 大幅减少网络传输数据量

分区优化

分区策略

-- 按时间分区(推荐)
PARTITION BY toYYYYMM(event_date)

-- 按用户ID分区
PARTITION BY intHash32(user_id) % 100

-- 复合分区
PARTITION BY (toYYYYMM(event_date), event_type)

分区管理

-- 查看分区信息
SELECT 
    partition,
    name,
    rows,
    formatReadableSize(data_uncompressed_bytes) AS uncompressed_size,
    formatReadableSize(data_compressed_bytes) AS compressed_size
FROM system.parts
WHERE table = 'events'
ORDER BY partition;

-- 删除过期分区
ALTER TABLE events DROP PARTITION '2023-01';

-- 移动分区
ALTER TABLE events MOVE PARTITION '2023-01' TO TABLE events_archive;

压缩优化

压缩算法选择

-- 设置压缩算法
CREATE TABLE events (
    event_date Date,
    event_data String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY event_date
SETTINGS 
    compression_codec = 'ZSTD(3)', -- 压缩算法和级别
    min_bytes_for_wide_part = 0,
    min_rows_for_wide_part = 0;

压缩算法对比

算法压缩比压缩速度解压速度适用场景
LZ42-3x很快很快实时写入
ZSTD3-5x平衡场景
LZMA5-8x冷数据存储

内存优化

内存设置

-- 查询内存限制
SET max_memory_usage = 10737418240; -- 10GB
SET max_memory_usage_for_user = 21474836480; -- 20GB

-- 临时表内存限制
SET max_bytes_before_external_group_by = 1073741824; -- 1GB
SET max_bytes_before_external_sort = 1073741824; -- 1GB

内存优化技巧

-- 1. 使用LIMIT限制结果集
SELECT * FROM events WHERE event_date = '2023-01-01' LIMIT 1000;

-- 2. 使用采样查询
SELECT * FROM events SAMPLE 0.1 WHERE event_date = '2023-01-01';

-- 3. 使用预聚合
SELECT 
    user_id,
    count() AS event_count,
    uniq(event_type) AS event_types
FROM events
WHERE event_date = '2023-01-01'
GROUP BY user_id;

ClickHouse 集群管理

集群架构

集群组件

graph TD
    A[客户端] --> B[负载均衡器]
    B --> C[ClickHouse节点1]
    B --> D[ClickHouse节点2]
    B --> E[ClickHouse节点3]
    
    F[ZooKeeper] --> C
    F --> D
    F --> E
    
    G[分布式表] --> C
    G --> D
    G --> E
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style F fill:#fff3e0
    style G fill:#e8f5e8

集群配置

<!-- config.xml -->
<clickhouse>
    <remote_servers>
        <cluster_name>
            <shard>
                <replica>
                    <host>node1</host>
                    <port>9000</port>
                </replica>
                <replica>
                    <host>node2</host>
                    <port>9000</port>
                </replica>
            </shard>
            <shard>
                <replica>
                    <host>node3</host>
                    <port>9000</port>
                </replica>
            </shard>
        </cluster_name>
    </remote_servers>
</clickhouse>

分片策略

分片类型

分片策略说明适用场景
随机分片数据随机分布到分片数据均匀分布
哈希分片按字段哈希值分片按用户ID分片
范围分片按字段范围分片按时间分片

分片配置

-- 创建分布式表
CREATE TABLE events_distributed AS events
ENGINE = Distributed(cluster_name, database, events, user_id);

-- 插入数据(自动路由到对应分片)
INSERT INTO events_distributed SELECT * FROM events_local;

复制机制

复制配置

-- 创建复制表
CREATE TABLE events_replicated (
    event_date Date,
    user_id UInt32,
    event_type String
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/events', 'replica1')
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id);

复制特性

  • 异步复制:写入主副本,异步同步到其他副本
  • 故障转移:主副本故障时自动切换到其他副本
  • 数据一致性:通过ZooKeeper保证元数据一致性

负载均衡

负载均衡策略

-- 1. 轮询负载均衡
SELECT * FROM events_distributed;

-- 2. 随机负载均衡
SELECT * FROM events_distributed SETTINGS load_balancing = 'random';

-- 3. 就近负载均衡
SELECT * FROM events_distributed SETTINGS load_balancing = 'nearest_hostname';

ClickHouse 运维实践

备份恢复

备份策略

# 1. 数据备份
clickhouse-client --query "BACKUP TABLE database.table TO '/backup/path'"

# 2. 配置文件备份
cp /etc/clickhouse-server/config.xml /backup/
cp /etc/clickhouse-server/users.xml /backup/

# 3. 元数据备份
clickhouse-client --query "SHOW CREATE TABLE database.table" > /backup/schema.sql

恢复操作

# 1. 恢复数据
clickhouse-client --query "RESTORE TABLE database.table FROM '/backup/path'"

# 2. 恢复表结构
clickhouse-client --query "$(cat /backup/schema.sql)"

数据迁移

数据迁移方法

-- 1. 使用INSERT SELECT
INSERT INTO target_table SELECT * FROM source_table;

-- 2. 使用物化视图
CREATE MATERIALIZED VIEW target_table
ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY event_date
AS SELECT * FROM source_table;

-- 3. 使用外部表
CREATE TABLE external_table (
    id UInt32,
    data String
) ENGINE = HDFS('hdfs://path/to/data', 'Parquet');

性能调优

系统参数调优

<!-- config.xml -->
<clickhouse>
    <max_concurrent_queries>100</max_concurrent_queries>
    <max_memory_usage>8589934592</max_memory_usage>
    <max_memory_usage_for_user>17179869184</max_memory_usage_for_user>
    <max_memory_usage_for_all_queries>34359738368</max_memory_usage_for_all_queries>
    
    <merge_tree>
        <parts_to_delay_insert>150</parts_to_delay_insert>
        <parts_to_throw_insert>300</parts_to_throw_insert>
        <max_bytes_to_merge_at_max_space_in_pool>2000000000000</max_bytes_to_merge_at_max_space_in_pool>
    </merge_tree>
</clickhouse>

故障排查

常见问题排查

-- 1. 查看系统状态
SELECT * FROM system.metrics WHERE metric LIKE 'Memory.%';
SELECT * FROM system.processes;

-- 2. 查看查询日志
SELECT 
    event_time,
    query_duration_ms,
    read_rows,
    result_rows,
    memory_usage
FROM system.query_log
WHERE event_time >= now() - INTERVAL 1 HOUR
ORDER BY query_duration_ms DESC
LIMIT 10;

-- 3. 查看错误日志
SELECT 
    event_time,
    message
FROM system.text_log
WHERE level >= 'Error'
ORDER BY event_time DESC
LIMIT 20;

ClickHouse 典型面试题与答疑

基础概念面试题

1. ClickHouse是什么?有什么特点?

答案:ClickHouse是由Yandex开发的开源列式数据库管理系统,专门用于OLAP场景。

核心特点

  • 列式存储:数据按列存储,提高压缩率和查询性能
  • 向量化执行:批量处理数据,利用SIMD指令优化
  • 高压缩比:数据压缩率可达10:1以上
  • 实时查询:支持实时数据插入和查询
  • 水平扩展:支持集群部署和分片

2. ClickHouse的存储引擎有哪些?如何选择?

答案:ClickHouse有多种存储引擎,主要包括:

  • MergeTree系列:最核心的引擎,支持分区、索引、压缩
  • Log系列:适用于小表、临时表
  • 集成引擎:用于连接外部数据源

选择策略

  • 大数据分析:MergeTree
  • 实时写入:MergeTree
  • 数据去重:ReplacingMergeTree
  • 临时数据:Log系列
  • 外部数据:集成引擎

3. ClickHouse的数据类型有哪些?

答案:ClickHouse支持丰富的数据类型:

基础类型

  • 整数:Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64
  • 浮点:Float32, Float64
  • 字符串:String, FixedString(N)
  • 日期时间:Date, DateTime, DateTime64

复合类型

  • 数组:Array(T)
  • 元组:Tuple(T1, T2, …)
  • Map:Map(KeyType, ValueType)

特殊类型

  • Nullable(T):可空类型
  • LowCardinality(T):低基数类型
  • Decimal(P, S):高精度小数

架构设计面试题

4. ClickHouse的架构是怎样的?

答案:ClickHouse采用分布式架构,主要组件包括:

核心组件

  • 查询解析器:解析SQL语句,生成语法树
  • 查询优化器:优化查询计划,选择最佳执行路径
  • 执行引擎:执行查询计划,处理数据
  • 存储引擎:管理数据存储和检索
  • 分布式引擎:处理分布式查询和写入

集群组件

  • ZooKeeper:元数据管理和集群协调
  • 负载均衡器:请求分发和负载均衡
  • 分片节点:数据存储和查询处理

5. ClickHouse的索引机制是怎样的?

答案:ClickHouse使用稀疏索引机制:

索引原理

  • 基于ORDER BY字段生成稀疏索引
  • 每8192行(默认)生成一个索引条目
  • 支持跳表索引和投影索引

索引优化

-- 跳表索引
ALTER TABLE events ADD INDEX idx_event_type event_type TYPE bloom_filter GRANULARITY 1;

-- 投影索引
ALTER TABLE events ADD PROJECTION proj_user_events (
    SELECT user_id, event_date, event_type
    ORDER BY user_id, event_date
);

6. ClickHouse的分区机制是怎样的?

答案:ClickHouse支持多种分区策略:

分区类型

  • 时间分区:按时间字段分区,如PARTITION BY toYYYYMM(event_date)
  • 哈希分区:按字段哈希值分区,如PARTITION BY intHash32(user_id) % 100
  • 复合分区:多个字段组合分区

分区管理

-- 查看分区信息
SELECT partition, rows, formatReadableSize(data_compressed_bytes) 
FROM system.parts WHERE table = 'events';

-- 删除分区
ALTER TABLE events DROP PARTITION '2023-01';

性能优化面试题

7. 如何优化ClickHouse查询性能?

答案:ClickHouse查询优化可以从以下几个方面:

索引优化

  • 合理设计ORDER BY字段顺序
  • 使用跳表索引加速过滤
  • 创建投影索引优化特定查询

分区优化

  • 选择合适的分区策略
  • 及时删除过期分区
  • 避免跨分区查询

查询优化

  • 使用LIMIT限制结果集
  • 使用采样查询减少数据量
  • 使用预聚合减少计算量

8. ClickHouse的内存优化策略有哪些?

答案:ClickHouse内存优化策略:

内存设置

-- 查询内存限制
SET max_memory_usage = 10737418240; -- 10GB
SET max_memory_usage_for_user = 21474836480; -- 20GB

-- 临时表内存限制
SET max_bytes_before_external_group_by = 1073741824; -- 1GB
SET max_bytes_before_external_sort = 1073741824; -- 1GB

优化技巧

  • 使用LIMIT限制结果集大小
  • 使用采样查询减少内存使用
  • 合理设置临时表内存阈值

9. ClickHouse的压缩优化策略有哪些?

答案:ClickHouse支持多种压缩算法:

压缩算法对比

  • LZ4:压缩比2-3x,速度很快,适合实时写入
  • ZSTD:压缩比3-5x,速度较快,平衡场景
  • LZMA:压缩比5-8x,速度较慢,适合冷数据

压缩配置

CREATE TABLE events (
    event_date Date,
    event_data String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY event_date
SETTINGS compression_codec = 'ZSTD(3)';

运维监控面试题

10. 如何监控ClickHouse集群状态?

答案:通过系统表监控ClickHouse状态:

系统指标监控

-- 内存使用情况
SELECT metric, value FROM system.metrics WHERE metric LIKE 'Memory.%';

-- 查询性能统计
SELECT event, value FROM system.events WHERE event LIKE '%Query%';

-- 磁盘使用情况
SELECT 
    database,
    table,
    formatReadableSize(sum(data_compressed_bytes)) AS compressed_size,
    formatReadableSize(sum(data_uncompressed_bytes)) AS uncompressed_size
FROM system.parts
GROUP BY database, table
ORDER BY sum(data_compressed_bytes) DESC;

11. ClickHouse集群如何实现高可用?

答案:ClickHouse高可用通过以下机制实现:

复制机制

  • 使用ReplicatedMergeTree引擎
  • 通过ZooKeeper协调副本同步
  • 支持多副本读写分离

分片机制

  • 数据水平分片存储
  • 单分片故障不影响整体服务
  • 支持动态扩容和缩容

故障转移

  • 自动检测节点故障
  • 查询自动路由到健康节点
  • 支持手动故障切换

12. ClickHouse的写入性能如何优化?

答案:ClickHouse写入性能优化策略:

批量写入

-- 使用大批量插入
INSERT INTO table SELECT * FROM input('column1 UInt32, column2 String') FORMAT CSV;

-- 设置批量大小
SET max_insert_block_size = 1048576;
SET max_insert_threads = 4;

异步写入

-- 使用异步插入
SET async_insert = 1;
SET wait_for_async_insert = 0;

分区策略

  • 合理设计分区键
  • 避免过多小分区
  • 定期合并分区

实际应用面试题

13. 在实际项目中如何设计ClickHouse表结构?

答案:ClickHouse表结构设计原则:

字段设计

CREATE TABLE user_events (
    -- 时间字段(分区键)
    event_date Date,
    event_time DateTime,
    
    -- 维度字段(ORDER BY键)
    user_id UInt64,
    event_type LowCardinality(String),
    
    -- 度量字段
    duration UInt32,
    value Float64,
    
    -- 属性字段
    properties Map(String, String),
    tags Array(String)
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id, event_type)
SETTINGS index_granularity = 8192;

设计要点

  • 分区键选择:通常选择时间字段,便于数据管理
  • 排序键设计:将查询频繁的字段放在前面
  • 数据类型优化:使用合适的数据类型节省空间
  • 索引策略:为高频查询字段创建跳表索引

14. 如何处理ClickHouse的数据一致性问题?

答案:ClickHouse数据一致性处理方案:

最终一致性

  • ClickHouse提供最终一致性保证
  • 通过异步复制实现数据同步
  • 读取时可能存在短暂不一致

一致性控制

-- 强制同步读取
SELECT * FROM table FINAL;

-- 等待复制完成
SYSTEM SYNC REPLICA table_name;

-- 检查复制状态
SELECT * FROM system.replicas WHERE table = 'table_name';

业务层处理

  • 设计幂等性操作
  • 使用ReplacingMergeTree处理重复数据
  • 实现业务层去重逻辑

15. ClickHouse在大数据场景下的最佳实践有哪些?

答案:ClickHouse大数据场景最佳实践:

数据建模

  • 使用宽表设计减少JOIN操作
  • 合理设计分区和排序键
  • 使用物化视图预聚合数据

查询优化

-- 使用预聚合表
CREATE MATERIALIZED VIEW user_daily_stats
ENGINE = SummingMergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, user_id)
AS SELECT 
    toDate(event_time) AS date,
    user_id,
    count() AS event_count,
    sum(duration) AS total_duration
FROM user_events
GROUP BY date, user_id;

16. 如何处理ClickHouse的数据倾斜问题?

答案:数据倾斜处理方法:

分区倾斜

  • 使用哈希分区替代时间分区
  • 调整分区粒度,避免单个分区过大

查询倾斜

  • 使用采样查询减少数据量
  • 使用预聚合减少计算量
  • 优化查询条件,减少扫描范围

17. ClickHouse在实时数据分析中的应用场景有哪些?

答案:ClickHouse实时数据分析应用场景:

应用场景

  • 用户行为分析:实时分析用户点击、浏览、购买行为
  • 业务监控:实时监控业务指标,如PV、UV、转化率
  • 日志分析:实时分析系统日志,快速定位问题
  • 广告投放:实时分析广告效果,优化投放策略
  • 金融风控:实时分析交易数据,识别风险行为

实现方案

  • 使用Kafka引擎实时接入数据
  • 使用物化视图预聚合数据
  • 使用分布式表实现水平扩展

运维管理

  • 定期清理过期数据
  • 监控集群资源使用
  • 优化合并策略

高频性能优化面试题

18. ClickHouse查询慢的常见原因和排查方法?

答案

常见原因

  1. 全表扫描:未使用索引或分区过滤
  2. 大量JOIN操作:多表关联导致性能下降
  3. GROUP BY字段过多:聚合维度过高
  4. 数据倾斜:某些分区数据量过大
  5. 内存不足:查询超出内存限制

排查方法

-- 1. 查看查询执行计划
EXPLAIN SELECT * FROM events WHERE user_id = 123;

-- 2. 查看慢查询日志
SELECT 
    query_id,
    query,
    query_duration_ms,
    read_rows,
    read_bytes,
    memory_usage
FROM system.query_log
WHERE type = 'QueryFinish'
  AND query_duration_ms > 1000
ORDER BY query_duration_ms DESC
LIMIT 10;

-- 3. 分析查询统计信息
SELECT 
    event_time,
    query,
    ProfileEvents.Names,
    ProfileEvents.Values
FROM system.query_log
WHERE query_id = 'xxx'
FORMAT Vertical;

-- 4. 检查分区使用情况
SELECT 
    partition,
    rows,
    formatReadableSize(data_compressed_bytes) AS size
FROM system.parts
WHERE table = 'events'
  AND active = 1
ORDER BY rows DESC;

优化方案

  • 添加WHERE条件过滤分区
  • 优化ORDER BY字段顺序
  • 使用物化视图预聚合
  • 增加内存限制或使用外部排序

19. ClickHouse如何实现千亿级数据的秒级查询?

答案

核心技术

  1. 列式存储 + 压缩
-- 使用高压缩比编码
CREATE TABLE big_table (
    id UInt64,
    name String CODEC(ZSTD(3)),
    value Float64 CODEC(Delta, ZSTD)
) ENGINE = MergeTree()
ORDER BY id;
  1. 稀疏索引 + 跳表索引
-- 主键索引
ORDER BY (date, user_id, event_type)

-- 跳表索引加速过滤
ALTER TABLE events ADD INDEX idx_status status TYPE set(100) GRANULARITY 1;
ALTER TABLE events ADD INDEX idx_category category TYPE bloom_filter GRANULARITY 1;
  1. 分区裁剪
-- 按时间分区,查询时自动裁剪
PARTITION BY toYYYYMM(date)

-- 查询只扫描相关分区
SELECT * FROM events 
WHERE date >= '2024-01-01' AND date < '2024-02-01';
  1. 向量化执行
  • 批量处理数据(默认65536行)
  • 利用SIMD指令加速计算
  • 减少函数调用开销
  1. 并行查询
-- 设置并行度
SET max_threads = 16;
SET max_distributed_connections = 100;
  1. 预聚合
-- 物化视图预计算
CREATE MATERIALIZED VIEW daily_stats
ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, user_id)
AS SELECT 
    date,
    user_id,
    countState() AS cnt,
    sumState(amount) AS total
FROM events
GROUP BY date, user_id;

-- 查询预聚合结果
SELECT 
    date,
    user_id,
    countMerge(cnt) AS count,
    sumMerge(total) AS sum
FROM daily_stats
WHERE date >= '2024-01-01'
GROUP BY date, user_id;

20. ClickHouse内存溢出(OOM)如何处理?

答案

原因分析

  1. 单个查询内存使用过大
  2. 并发查询过多
  3. GROUP BY维度过高
  4. JOIN数据量过大

解决方案

-- 1. 限制单个查询内存
SET max_memory_usage = 10737418240; -- 10GB
SET max_memory_usage_for_user = 21474836480; -- 20GB

-- 2. 使用外部排序/聚合
SET max_bytes_before_external_group_by = 10737418240;
SET max_bytes_before_external_sort = 10737418240;

-- 3. 限制结果集大小
SET max_result_rows = 1000000;
SET max_result_bytes = 1073741824;

-- 4. 使用采样查询
SELECT * FROM large_table SAMPLE 0.1 WHERE ...;

-- 5. 分批处理
SELECT * FROM large_table 
WHERE date >= '2024-01-01' AND date < '2024-01-02'
LIMIT 1000000;

监控内存使用

-- 查看当前内存使用
SELECT 
    metric,
    formatReadableSize(value) AS size
FROM system.metrics
WHERE metric LIKE '%Memory%';

-- 查看查询内存使用
SELECT 
    query_id,
    query,
    formatReadableSize(memory_usage) AS memory,
    formatReadableSize(peak_memory_usage) AS peak_memory
FROM system.query_log
WHERE type = 'QueryFinish'
ORDER BY peak_memory_usage DESC
LIMIT 10;

21. ClickHouse分布式表查询性能优化?

答案

分布式查询原理

graph TB
    Client[客户端] --> Coordinator[协调节点]
    Coordinator --> Shard1[分片1]
    Coordinator --> Shard2[分片2]
    Coordinator --> Shard3[分片3]
    Shard1 --> Merge[结果合并]
    Shard2 --> Merge
    Shard3 --> Merge
    Merge --> Client

优化策略

  1. 本地表优化
-- 优化本地表结构
CREATE TABLE events_local (
    date Date,
    user_id UInt64,
    event_type String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, user_id);
  1. 分片键选择
-- 使用合适的分片键
CREATE TABLE events_dist AS events_local
ENGINE = Distributed(cluster, database, events_local, rand());

-- 或使用业务字段分片
ENGINE = Distributed(cluster, database, events_local, intHash64(user_id));
  1. 避免全局聚合
-- ❌ 慢:全局聚合
SELECT user_id, count(*) 
FROM events_dist 
GROUP BY user_id;

-- ✅ 快:两阶段聚合
SELECT user_id, sum(cnt) 
FROM (
    SELECT user_id, count() AS cnt
    FROM events_local
    GROUP BY user_id
)
GROUP BY user_id;
  1. 使用GLOBAL JOIN
-- 小表广播到所有节点
SELECT * 
FROM events_dist e
GLOBAL JOIN users_dist u ON e.user_id = u.id;
  1. 并行度控制
SET max_distributed_connections = 100;
SET max_threads = 16;
SET distributed_aggregation_memory_efficient = 1;

架构设计高频面试题

22. ClickHouse集群如何设计分片和副本策略?

答案

分片策略

策略适用场景优缺点
随机分片数据均匀分布简单但无法按key查询
哈希分片按用户/ID分片数据均匀,支持key查询
范围分片按时间/地域分片便于管理,可能倾斜

实现示例

-- 1. 创建本地表
CREATE TABLE events_local ON CLUSTER cluster (
    date Date,
    user_id UInt64,
    event_type String,
    value Float64
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/events', '{replica}')
PARTITION BY toYYYYMM(date)
ORDER BY (date, user_id);

-- 2. 创建分布式表(哈希分片)
CREATE TABLE events_dist ON CLUSTER cluster AS events_local
ENGINE = Distributed(cluster, default, events_local, intHash64(user_id));

-- 3. 副本配置(在config.xml中)
<remote_servers>
    <cluster>
        <shard>
            <replica>
                <host>node1</host>
                <port>9000</port>
            </replica>
            <replica>
                <host>node2</host>
                <port>9000</port>
            </replica>
        </shard>
        <shard>
            <replica>
                <host>node3</host>
                <port>9000</port>
            </replica>
            <replica>
                <host>node4</host>
                <port>9000</port>
            </replica>
        </shard>
    </cluster>
</remote_servers>

副本策略

  • 2副本:基本高可用,节省资源
  • 3副本:高可用,允许1个节点故障
  • 跨机房部署:提高容灾能力

23. ClickHouse与其他OLAP引擎对比?

答案

特性ClickHouseDruidPrestoDoris
查询性能⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
实时写入⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
SQL支持⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
运维复杂度⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
生态成熟度⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐

ClickHouse优势

  • 查询性能极致优化
  • SQL标准支持完善
  • 部署运维相对简单
  • 压缩比高,存储成本低

ClickHouse劣势

  • 不支持事务
  • 更新删除性能较差
  • JOIN性能一般

24. ClickHouse数据导入方案设计?

答案

方案对比

方案吞吐量实时性复杂度适用场景
INSERT SELECT批量导入
Kafka引擎实时流式
JDBC/ODBC小数据量
HTTP接口API集成
文件导入离线导入

实时导入方案

-- 1. 创建Kafka引擎表
CREATE TABLE events_kafka (
    date Date,
    user_id UInt64,
    event_type String
) ENGINE = Kafka
SETTINGS 
    kafka_broker_list = 'localhost:9092',
    kafka_topic_list = 'events',
    kafka_group_name = 'clickhouse_consumer',
    kafka_format = 'JSONEachRow';

-- 2. 创建物化视图自动导入
CREATE MATERIALIZED VIEW events_mv TO events_local AS
SELECT 
    date,
    user_id,
    event_type
FROM events_kafka;

批量导入方案

-- 从文件导入
INSERT INTO events_local 
SELECT * FROM file('/data/events.csv', 'CSV');

-- 从其他表导入
INSERT INTO events_local 
SELECT * FROM mysql('host:port', 'db', 'table', 'user', 'password');

25. ClickHouse如何实现数据血缘和元数据管理?

答案

数据血缘追踪

-- 1. 查看表依赖关系
SELECT 
    database,
    table,
    dependencies_database,
    dependencies_table
FROM system.tables
WHERE dependencies_database != ''
  AND dependencies_table != '';

-- 2. 查看物化视图依赖
SELECT 
    database,
    name AS view_name,
    as_select AS definition
FROM system.tables
WHERE engine = 'MaterializedView';

-- 3. 查看表创建语句
SHOW CREATE TABLE events_local;

元数据管理

-- 1. 表结构信息
SELECT 
    database,
    table,
    name AS column_name,
    type AS column_type,
    default_kind,
    default_expression
FROM system.columns
WHERE database = 'default' AND table = 'events';

-- 2. 分区信息
SELECT 
    partition,
    name AS part_name,
    rows,
    formatReadableSize(bytes_on_disk) AS size,
    modification_time
FROM system.parts
WHERE table = 'events' AND active = 1
ORDER BY modification_time DESC;

-- 3. 表统计信息
SELECT 
    database,
    table,
    formatReadableSize(sum(bytes)) AS size,
    sum(rows) AS rows,
    count() AS parts
FROM system.parts
WHERE active = 1
GROUP BY database, table
ORDER BY sum(bytes) DESC;

故障排查高频面试题

26. ClickHouse常见故障及排查方法?

答案

故障类型及排查

1. 查询超时

-- 检查慢查询
SELECT 
    query_id,
    query,
    query_duration_ms,
    read_rows,
    formatReadableSize(read_bytes) AS read_size
FROM system.query_log
WHERE type = 'QueryFinish'
  AND query_duration_ms > 10000
ORDER BY query_duration_ms DESC
LIMIT 10;

-- 查看正在执行的查询
SELECT 
    query_id,
    user,
    elapsed,
    formatReadableSize(memory_usage) AS memory,
    query
FROM system.processes
ORDER BY elapsed DESC;

-- 终止慢查询
KILL QUERY WHERE query_id = 'xxx';

2. 内存不足

-- 检查内存使用
SELECT 
    metric,
    formatReadableSize(value) AS size
FROM system.metrics
WHERE metric LIKE '%Memory%';

-- 检查查询内存使用
SELECT 
    query_id,
    formatReadableSize(memory_usage) AS memory,
    formatReadableSize(peak_memory_usage) AS peak_memory
FROM system.query_log
WHERE type = 'QueryFinish'
ORDER BY peak_memory_usage DESC
LIMIT 10;

3. 磁盘空间不足

-- 检查磁盘使用
SELECT 
    name,
    path,
    formatReadableSize(free_space) AS free,
    formatReadableSize(total_space) AS total,
    round(free_space / total_space * 100, 2) AS free_percent
FROM system.disks;

-- 清理过期分区
ALTER TABLE events DROP PARTITION '202301';

-- 优化表(合并小分区)
OPTIMIZE TABLE events FINAL;

4. 副本同步延迟

-- 检查副本状态
SELECT 
    database,
    table,
    is_leader,
    absolute_delay,
    queue_size,
    inserts_in_queue,
    merges_in_queue
FROM system.replicas
WHERE absolute_delay > 60;

-- 强制同步副本
SYSTEM SYNC REPLICA events_local;

-- 重启副本
SYSTEM RESTART REPLICA events_local;

27. ClickHouse数据丢失如何处理?

答案

预防措施

  1. 使用副本:至少2副本
  2. 定期备份:使用clickhouse-backup工具
  3. 监控告警:监控副本状态和磁盘空间

数据恢复方案

-- 1. 从副本恢复
-- 在故障节点上重新拉取数据
SYSTEM RESTORE REPLICA events_local;

-- 2. 从备份恢复
-- 使用clickhouse-backup工具
clickhouse-backup restore backup_name

-- 3. 从ZooKeeper恢复元数据
-- 检查ZooKeeper中的元数据
SELECT * FROM system.zookeeper WHERE path = '/clickhouse/tables/shard1/events';

-- 4. 重建表(最后手段)
-- 删除损坏的表
DROP TABLE events_local;

-- 重新创建表
CREATE TABLE events_local ...;

-- 从其他副本复制数据
INSERT INTO events_local SELECT * FROM remote('other_node', default, events_local);

28. ClickHouse集群扩容缩容方案?

答案

扩容方案

-- 1. 添加新节点到配置
-- 修改config.xml,添加新分片
<remote_servers>
    <cluster>
        <shard>
            <replica><host>new_node</host></replica>
        </shard>
    </cluster>
</remote_servers>

-- 2. 重新加载配置
SYSTEM RELOAD CONFIG;

-- 3. 在新节点创建表
CREATE TABLE events_local ON CLUSTER cluster ...;

-- 4. 数据迁移(可选)
-- 使用分布式表自动分片
INSERT INTO events_dist SELECT * FROM events_local;

-- 或手动迁移部分数据
INSERT INTO events_local 
SELECT * FROM remote('old_node', default, events_local)
WHERE user_id % 4 = 3; -- 迁移1/4数据到新节点

缩容方案

-- 1. 停止写入待下线节点
-- 修改分布式表配置,移除该节点

-- 2. 迁移数据到其他节点
INSERT INTO events_dist 
SELECT * FROM remote('old_node', default, events_local);

-- 3. 验证数据完整性
SELECT count() FROM events_dist;
SELECT count() FROM remote('old_node', default, events_local);

-- 4. 删除节点配置
-- 修改config.xml,移除节点配置

-- 5. 重新加载配置
SYSTEM RELOAD CONFIG;

实战经验面试题

29. ClickHouse在亿级用户画像场景的应用?

答案

场景需求

  • 用户数:1亿+
  • 标签数:500+
  • 查询QPS:1000+
  • 查询延迟:<100ms

表设计

-- 用户画像宽表
CREATE TABLE user_profile (
    user_id UInt64,
    update_time DateTime,
    
    -- 基础属性
    age UInt8,
    gender LowCardinality(String),
    city LowCardinality(String),
    
    -- 行为标签(使用Bitmap)
    active_days_bitmap AggregateFunction(groupBitmap, UInt32),
    purchase_categories_bitmap AggregateFunction(groupBitmap, UInt16),
    
    -- 偏好标签(使用Array)
    interest_tags Array(String),
    
    -- 统计指标
    total_orders UInt32,
    total_amount Decimal(18, 2),
    last_order_time DateTime
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(update_time)
ORDER BY user_id;

-- 标签明细表
CREATE TABLE user_tags (
    user_id UInt64,
    tag_type LowCardinality(String),
    tag_value String,
    score Float32,
    update_time DateTime
) ENGINE = ReplacingMergeTree(update_time)
PARTITION BY toYYYYMM(update_time)
ORDER BY (user_id, tag_type, tag_value);

查询优化

-- 1. 单用户画像查询
SELECT 
    user_id,
    age,
    gender,
    city,
    bitmapCardinality(active_days_bitmap) AS active_days,
    interest_tags
FROM user_profile
WHERE user_id = 123456;

-- 2. 人群圈选(使用Bitmap)
SELECT count() AS user_count
FROM user_profile
WHERE age BETWEEN 20 AND 30
  AND gender = 'F'
  AND bitmapContains(purchase_categories_bitmap, 10); -- 购买过类目10

-- 3. 标签统计
SELECT 
    tag_type,
    tag_value,
    count() AS user_count
FROM user_tags
WHERE tag_type = 'interest'
GROUP BY tag_type, tag_value
ORDER BY user_count DESC
LIMIT 100;

30. ClickHouse在实时大屏场景的应用?

答案

场景需求

  • 数据量:每天10亿+事件
  • 更新频率:秒级
  • 查询类型:聚合统计、趋势分析
  • 并发查询:100+

架构设计

-- 1. 实时明细表
CREATE TABLE events_realtime (
    event_time DateTime,
    event_type LowCardinality(String),
    user_id UInt64,
    value Float64
) ENGINE = MergeTree()
PARTITION BY toYYYYMMDD(event_time)
ORDER BY (event_time, event_type)
TTL event_time + INTERVAL 7 DAY; -- 7天后自动删除

-- 2. 分钟级预聚合表
CREATE MATERIALIZED VIEW events_minute_mv
ENGINE = SummingMergeTree()
PARTITION BY toYYYYMMDD(minute)
ORDER BY (minute, event_type)
AS SELECT 
    toStartOfMinute(event_time) AS minute,
    event_type,
    count() AS event_count,
    sum(value) AS total_value,
    uniq(user_id) AS unique_users
FROM events_realtime
GROUP BY minute, event_type;

-- 3. 小时级预聚合表
CREATE MATERIALIZED VIEW events_hour_mv
ENGINE = SummingMergeTree()
PARTITION BY toYYYYMM(hour)
ORDER BY (hour, event_type)
AS SELECT 
    toStartOfHour(event_time) AS hour,
    event_type,
    count() AS event_count,
    sum(value) AS total_value,
    uniq(user_id) AS unique_users
FROM events_realtime
GROUP BY hour, event_type;

查询示例

-- 实时指标(最近1小时)
SELECT 
    event_type,
    sum(event_count) AS total_events,
    sum(unique_users) AS total_users
FROM events_minute_mv
WHERE minute >= now() - INTERVAL 1 HOUR
GROUP BY event_type;

-- 趋势分析(最近24小时)
SELECT 
    hour,
    event_type,
    sum(event_count) AS events
FROM events_hour_mv
WHERE hour >= now() - INTERVAL 24 HOUR
GROUP BY hour, event_type
ORDER BY hour, event_type;

性能优化

  • 使用物化视图预聚合
  • 设置合理的TTL自动清理数据
  • 使用LowCardinality优化字符串字段
  • 使用SummingMergeTree自动合并数据

存储层面优化面试题

31. ClickHouse在存储层面是如何优化的?

答案

核心优化技术

1. 列式存储

传统行式存储:
Row1: [id=1, name="张三", age=25, city="北京", salary=10000]
Row2: [id=2, name="李四", age=30, city="上海", salary=15000]

ClickHouse列式存储:
Column id:     [1, 2]
Column name:   ["张三", "李四"]
Column age:    [25, 30]
Column city:   ["北京", "上海"]
Column salary: [10000, 15000]

优势

  • 压缩率高:同类型数据连续存储,压缩效果好(10:1以上)
  • 查询快:只读取需要的列,减少IO
  • 缓存友好:列数据连续,CPU缓存命中率高

2. 数据压缩

压缩算法压缩比速度CPU消耗适用场景
LZ42-3x极快实时写入、热数据
ZSTD3-5x平衡场景、温数据
LZMA5-8x冷数据、归档
Delta2-10x递增数据、时间戳
DoubleDelta3-15x时序数据
Gorilla5-20x浮点数时序

压缩配置示例

CREATE TABLE metrics (
    timestamp DateTime CODEC(DoubleDelta, ZSTD),  -- 时间戳:双重Delta + ZSTD
    metric_id UInt32 CODEC(Delta, LZ4),           -- 递增ID:Delta + LZ4
    value Float64 CODEC(Gorilla, ZSTD),           -- 浮点值:Gorilla + ZSTD
    tags String CODEC(ZSTD(3))                    -- 字符串:ZSTD高压缩
) ENGINE = MergeTree()
ORDER BY (timestamp, metric_id);

3. 稀疏索引

传统B+树索引(MySQL):
- 每行都有索引条目
- 索引文件大,占用内存多
- 适合点查询

ClickHouse稀疏索引:
- 每8192行(granule)一个索引条目
- 索引文件小,全部加载到内存
- 适合范围查询

索引结构

-- 数据按ORDER BY排序存储
ORDER BY (date, user_id, event_type)

-- 稀疏索引示例
Granule 0:  date=2024-01-01, user_id=1,    event_type="click"
Granule 1:  date=2024-01-01, user_id=8193, event_type="view"
Granule 2:  date=2024-01-01, user_id=16385, event_type="purchase"

-- 查询时快速定位
SELECT * FROM events 
WHERE date = '2024-01-01' AND user_id = 10000;
-- 直接跳到Granule 1,只扫描8192行

4. 数据分区

-- 按时间分区
PARTITION BY toYYYYMM(date)

-- 物理存储结构
/var/lib/clickhouse/data/default/events/
├── 202401_1_1_0/          -- 2024年1月分区
   ├── checksums.txt
   ├── columns.txt
   ├── date.bin           -- date列数据
   ├── date.mrk2          -- date列标记文件
   ├── user_id.bin        -- user_id列数据
   ├── user_id.mrk2
   └── primary.idx        -- 主键索引
├── 202402_2_2_0/          -- 2024年2月分区
└── 202403_3_3_0/          -- 2024年3月分区

分区优势

  • 快速删除:删除整个分区,秒级完成
  • 查询裁剪:只扫描相关分区
  • 并行处理:多分区并行查询

5. 数据块(Granule)设计

-- 默认granule大小:8192行
SETTINGS index_granularity = 8192;

-- 自适应granule(推荐)
SETTINGS index_granularity_bytes = 10485760;  -- 10MB

-- 工作原理
每个granule包含
- 数据块:8192行或10MB数据
- 标记文件:记录每个granule的偏移量
- 主键索引:记录每个granule的最小值

6. MergeTree合并机制

-- 数据写入流程
INSERT  生成新Part  后台异步合并  删除旧Part

-- 合并策略
Part<1GB   快速合并(分钟级)
Part1-10GB  定期合并(小时级)
Part>10GB   很少合并(天级)

-- 查看Part信息
SELECT 
    partition,
    name,
    rows,
    formatReadableSize(bytes_on_disk) AS size,
    level  -- 合并层级,越大表示合并次数越多
FROM system.parts
WHERE table = 'events' AND active = 1
ORDER BY partition, level;

7. 向量化执行

传统执行(逐行处理):
for row in rows:
    result = process(row)

ClickHouse向量化(批量处理):
batch = rows[0:65536]  -- 一次处理64K行
results = process_batch(batch)  -- SIMD指令加速

性能对比

-- 测试向量化效果
SELECT sum(value) FROM large_table;

-- 传统方式:10秒
-- 向量化:  0.5秒(20倍提升)

32. ClickHouse的存储文件格式是怎样的?

答案

文件结构详解

# 单个Part的文件结构
/var/lib/clickhouse/data/default/events/202401_1_1_0/
├── checksums.txt          # 所有文件的校验和
├── columns.txt            # 列信息
├── count.txt              # 行数
├── partition.dat          # 分区值
├── minmax_date.idx        # 分区键的最小最大值
├── primary.idx            # 主键索引(稀疏索引)
├── date.bin               # date列的数据文件(压缩后)
├── date.mrk2              # date列的标记文件(记录granule偏移)
├── user_id.bin            # user_id列的数据文件
├── user_id.mrk2           # user_id列的标记文件
├── event_type.bin         # event_type列的数据文件
├── event_type.mrk2        # event_type列的标记文件
└── skp_idx_event_type.idx # 跳表索引文件(如果有)

文件类型说明

文件类型作用大小
.bin压缩后的列数据大(GB级)
.mrk2标记文件,记录granule偏移小(KB级)
primary.idx主键索引,每个granule一条小(MB级)
checksums.txt校验和,保证数据完整性极小
columns.txt列定义极小

查询时的文件读取流程

-- 查询示例
SELECT event_type, count() 
FROM events 
WHERE date = '2024-01-15' AND user_id > 10000
GROUP BY event_type;

-- 读取流程
1. 读取 minmax_date.idx  判断分区是否包含目标日期
2. 读取 primary.idx  定位包含 user_id > 10000 granule范围
3. 读取 user_id.mrk2  获取granule的文件偏移量
4. 读取 user_id.bin  读取相关granule的user_id数据
5. 读取 event_type.bin  读取相关granule的event_type数据
6. 内存中过滤、聚合、返回结果

33. ClickHouse如何优化字符串存储?

答案

字符串优化技术

1. LowCardinality类型

-- 普通String:每个值都存储完整字符串
CREATE TABLE events (
    event_type String  -- 占用:平均10字节 × 10亿行 = 10GB
) ENGINE = MergeTree() ORDER BY event_type;

-- LowCardinality:字典编码
CREATE TABLE events (
    event_type LowCardinality(String)  -- 占用:字典100KB + 索引4GB = 4GB
) ENGINE = MergeTree() ORDER BY event_type;

-- 原理
字典:["click", "view", "purchase"]  -- 只存储一次
数据:[0, 1, 0, 2, 1, 0, ...]        -- 存储字典索引(UInt32)

适用场景

  • 基数 < 10000(不同值的数量)
  • 重复率高的字符串字段
  • 如:状态、类型、城市、国家等

性能对比

-- 测试数据:10亿行,100个不同的event_type
-- String:           存储10GB,查询3秒
-- LowCardinality:   存储4GB,查询1秒

2. FixedString类型

-- 固定长度字符串
CREATE TABLE users (
    user_id FixedString(32),  -- MD5哈希,固定32字节
    ip_address FixedString(16) -- IPv6,固定16字节
) ENGINE = MergeTree() ORDER BY user_id;

-- 优势
- 无需存储长度信息
- 内存对齐,访问更快
- 压缩效果更好

3. 字符串压缩

CREATE TABLE logs (
    message String CODEC(ZSTD(3)),  -- 高压缩比
    url String CODEC(LZ4)            -- 快速压缩
) ENGINE = MergeTree() ORDER BY tuple();

数据库对比面试题

34. ClickHouse与MySQL的区别?

答案

核心差异对比

特性ClickHouseMySQL
存储方式列式存储行式存储
主要场景OLAP(分析)OLTP(事务)
查询性能亿级秒查百万级秒查
写入性能批量快(百万/秒)单条快(万/秒)
事务支持❌ 不支持✅ 完整支持
更新删除⚠️ 异步,慢✅ 实时,快
JOIN性能⚠️ 一般✅ 较好
压缩比10:1 ~ 100:12:1 ~ 5:1
索引类型稀疏索引B+树索引
并发写入中等
数据一致性最终一致强一致

使用场景对比

-- ✅ ClickHouse适合
-- 1. 大数据量分析
SELECT 
    toYYYYMM(date) AS month,
    event_type,
    count() AS cnt
FROM events  -- 100亿行
WHERE date >= '2024-01-01'
GROUP BY month, event_type;
-- ClickHouse: 2秒
-- MySQL: 超时或OOM

-- 2. 实时报表
SELECT 
    city,
    sum(amount) AS total,
    avg(amount) AS avg_amount
FROM orders  -- 10亿行
WHERE date = today()
GROUP BY city;
-- ClickHouse: 0.5秒
-- MySQL: 30秒+

-- ✅ MySQL适合
-- 1. 事务处理
BEGIN;
UPDATE accounts SET balance = balance - 100 WHERE id = 1;
UPDATE accounts SET balance = balance + 100 WHERE id = 2;
COMMIT;
-- MySQL: 支持ACID
-- ClickHouse: 不支持事务

-- 2. 频繁更新
UPDATE users SET status = 'active' WHERE id = 123;
-- MySQL: 毫秒级
-- ClickHouse: 秒级(异步mutation)

-- 3. 复杂JOIN
SELECT u.name, o.amount, p.product_name
FROM users u
JOIN orders o ON u.id = o.user_id
JOIN products p ON o.product_id = p.id
WHERE u.city = 'Beijing';
-- MySQL: 优化器成熟,性能好
-- ClickHouse: JOIN性能一般

架构差异

MySQL架构:
客户端 → SQL解析 → 优化器 → 执行器 → 存储引擎(InnoDB)
                                    ↓
                              B+树索引 + 行式存储

ClickHouse架构:
客户端 → SQL解析 → 优化器 → 向量化执行引擎
                              ↓
                    稀疏索引 + 列式存储 + 压缩

35. ClickHouse与Hive的区别?

答案

核心差异

特性ClickHouseHive
查询延迟秒级分钟级
架构MPP数据库基于Hadoop的数据仓库
存储自有列式存储HDFS(Parquet/ORC)
计算引擎内置向量化引擎MapReduce/Tez/Spark
实时性准实时批处理
SQL支持完整SQLHiveQL(类SQL)
资源消耗低(单机可用)高(需要集群)
运维复杂度高(依赖Hadoop生态)
数据更新支持(异步)不支持(只能重写分区)
小文件问题严重

性能对比

-- 相同查询:统计10亿行数据
SELECT 
    date,
    event_type,
    count() AS cnt,
    uniq(user_id) AS uv
FROM events
WHERE date >= '2024-01-01'
GROUP BY date, event_type;

-- ClickHouse: 2-5秒
-- Hive(MapReduce): 2-5分钟
-- Hive(Tez): 30-60秒
-- Hive(Spark): 10-30秒

使用场景

-- ✅ ClickHouse适合
-- 1. 实时查询
SELECT count() FROM events WHERE date = today();
-- ClickHouse: <1秒
-- Hive: 30秒+

-- 2. 交互式分析
SELECT * FROM events WHERE user_id = 123 LIMIT 100;
-- ClickHouse: 毫秒级
-- Hive: 10秒+

-- 3. 高并发查询
-- ClickHouse: 支持100+ QPS
-- Hive: 支持10 QPS

-- ✅ Hive适合
-- 1. 超大规模离线计算
SELECT ... FROM events  -- 1000亿行
JOIN users ON ...       -- 10亿行
JOIN products ON ...;   -- 1亿行
-- Hive: 可以处理(分布式计算)
-- ClickHouse: 可能OOM

-- 2. 复杂ETL
INSERT OVERWRITE TABLE result
SELECT 
    -- 复杂的数据清洗、转换逻辑
    ...
FROM source_table
-- Hive: 成熟的ETL生态
-- ClickHouse: 功能有限

-- 3. 与Hadoop生态集成
-- Hive: 无缝集成HDFS、HBase、Spark
-- ClickHouse: 需要额外开发

36. ClickHouse与Elasticsearch的区别?

答案

核心差异

特性ClickHouseElasticsearch
主要用途OLAP分析全文搜索 + 日志分析
查询语言SQLDSL(JSON)
聚合性能⭐⭐⭐⭐⭐⭐⭐⭐
全文搜索⭐⭐⭐⭐⭐⭐⭐
写入性能⭐⭐⭐⭐⭐⭐⭐⭐⭐
存储成本低(高压缩)高(倒排索引)
学习曲线平缓(SQL)陡峭(DSL)
运维复杂度

性能对比

-- 场景1:聚合统计(10亿行)
SELECT 
    date,
    count() AS cnt,
    avg(response_time) AS avg_time
FROM logs
WHERE date >= '2024-01-01'
GROUP BY date;

-- ClickHouse: 1-2秒
-- Elasticsearch: 5-10秒

-- 场景2:全文搜索
SELECT * FROM logs 
WHERE message LIKE '%error%' AND message LIKE '%timeout%';

-- ClickHouse: 5-10秒(全表扫描)
-- Elasticsearch: <1秒(倒排索引)

-- 场景3:复杂聚合
SELECT 
    status,
    percentile(response_time, 0.95) AS p95,
    percentile(response_time, 0.99) AS p99
FROM logs
GROUP BY status;

-- ClickHouse: 2秒
-- Elasticsearch: 8秒

使用建议

  • 日志搜索 + 简单统计:Elasticsearch
  • 复杂聚合 + 大数据分析:ClickHouse
  • 混合场景:ClickHouse存储 + Elasticsearch搜索

37. ClickHouse与Druid的区别?

答案

核心差异

特性ClickHouseDruid
实时写入⭐⭐⭐⭐⭐⭐⭐⭐⭐
查询性能⭐⭐⭐⭐⭐⭐⭐⭐⭐
SQL支持完整部分
预聚合物化视图内置Rollup
架构复杂度简单复杂(多组件)
运维成本
精确去重✅ 支持❌ 近似

架构对比

ClickHouse架构:
简单 → 只需ClickHouse Server + ZooKeeper

Druid架构:
复杂 → Coordinator + Overlord + Broker + Historical + MiddleManager + ZooKeeper

使用场景

  • 实时大屏、监控:Druid(实时性更好)
  • 复杂分析、报表:ClickHouse(SQL更强大)
  • 精确去重需求:ClickHouse(支持精确uniq)
  • 超高并发写入:Druid(写入性能更好)

18. 如何排查ClickHouse性能问题?

答案:性能问题排查步骤:

查询日志分析

-- 慢查询分析
SELECT 
    event_time, query_duration_ms, read_rows, result_rows,
    substr(query, 1, 100) AS query_preview
FROM system.query_log
WHERE query_duration_ms > 1000
ORDER BY query_duration_ms DESC
LIMIT 10;

系统资源分析

-- 内存使用分析
SELECT metric, value FROM system.metrics WHERE metric LIKE 'Memory.%';

-- 合并任务分析
SELECT database, table, num_parts, total_size_bytes_compressed
FROM system.merges;

19. ClickHouse的备份恢复策略有哪些?

答案:ClickHouse备份恢复策略:

备份方法

# 数据备份
clickhouse-client --query "BACKUP TABLE database.table TO '/backup/path'"

# 配置文件备份
cp /etc/clickhouse-server/config.xml /backup/
cp /etc/clickhouse-server/users.xml /backup/

# 元数据备份
clickhouse-client --query "SHOW CREATE TABLE database.table" > /backup/schema.sql

恢复方法

# 恢复数据
clickhouse-client --query "RESTORE TABLE database.table FROM '/backup/path'"

# 恢复表结构
clickhouse-client --query "$(cat /backup/schema.sql)"

ClickHouse 高级特性

物化视图

物化视图概念: 物化视图是一种特殊的表,它会自动根据源表的变化更新数据,常用于数据预聚合和实时计算。

创建物化视图

-- 创建聚合物化视图
CREATE MATERIALIZED VIEW user_hourly_stats
ENGINE = SummingMergeTree()
PARTITION BY toYYYYMM(hour)
ORDER BY (hour, user_id)
AS SELECT 
    toStartOfHour(event_time) AS hour,
    user_id,
    count() AS event_count,
    sum(duration) AS total_duration,
    uniq(session_id) AS session_count
FROM user_events
GROUP BY hour, user_id;

-- 创建实时ETL物化视图
CREATE MATERIALIZED VIEW user_profile_mv
ENGINE = ReplacingMergeTree(updated_at)
ORDER BY user_id
AS SELECT 
    user_id,
    argMax(name, updated_at) AS name,
    argMax(email, updated_at) AS email,
    max(updated_at) AS updated_at
FROM user_updates
GROUP BY user_id;

物化视图管理

-- 查看物化视图
SELECT * FROM system.tables WHERE engine LIKE '%MaterializedView%';

-- 删除物化视图
DROP TABLE user_hourly_stats;

-- 重建物化视图
DETACH TABLE user_hourly_stats;
ATTACH TABLE user_hourly_stats;

物化视图最佳实践

  • 用于频繁查询的聚合计算
  • 减少实时查询的计算开销
  • 注意存储空间的权衡
  • 定期检查和优化视图性能

字典功能

字典概念: 字典是ClickHouse的一种特殊数据结构,用于存储键值映射关系,支持高效的查找操作。

字典配置

<!-- dictionaries/user_dict.xml -->
<dictionaries>
    <dictionary>
        <name>user_dict</name>
        <source>
            <clickhouse>
                <host>localhost</host>
                <port>9000</port>
                <user>default</user>
                <password></password>
                <db>default</db>
                <table>users</table>
            </clickhouse>
        </source>
        <layout>
            <hashed/>
        </layout>
        <structure>
            <id>
                <name>user_id</name>
            </id>
            <attribute>
                <name>name</name>
                <type>String</type>
            </attribute>
            <attribute>
                <name>email</name>
                <type>String</type>
            </attribute>
        </structure>
        <lifetime>300</lifetime>
    </dictionary>
</dictionaries>

字典使用

-- 字典查询函数
SELECT 
    user_id,
    dictGet('user_dict', 'name', user_id) AS user_name,
    dictGet('user_dict', 'email', user_id) AS user_email
FROM events;

-- 检查字典状态
SELECT * FROM system.dictionaries WHERE name = 'user_dict';

-- 重新加载字典
SYSTEM RELOAD DICTIONARY user_dict;

字典类型

字典类型特点适用场景
flat数组存储,快速访问连续的数字键
hashed哈希表存储任意类型键
cacheLRU缓存大字典,部分热点数据
range_hashed范围哈希时间范围查询

UDF

UDF概念: 用户定义函数允许用户扩展ClickHouse的功能,支持多种编程语言实现自定义逻辑。

创建UDF

-- 创建简单的UDF
CREATE FUNCTION my_add AS (x, y) -> x + y;

-- 创建复杂的UDF
CREATE FUNCTION calculate_score AS (
    clicks UInt32,
    views UInt32,
    duration UInt32
) -> multiIf(
    views = 0, 0,
    clicks / views > 0.1, (clicks * 10 + duration / 60) * 1.5,
    clicks / views > 0.05, (clicks * 10 + duration / 60) * 1.2,
    clicks * 10 + duration / 60
);

-- 计算两个等长字符串相同字符数量
CREATE  FUNCTION commonCharCountUnordered AS (s1, s2) ->
    length(
        arrayIntersect(
            arraySort(groupUniqArray(arrayJoin(splitByString('', s1)))),
            arraySort(groupUniqArray(arrayJoin(splitByString('', s2))))
        )
    );

-- 匹配两个字符串共有前缀,自定义函数
DROP FUNCTION IF EXISTS commonPrefix;
CREATE FUNCTION commonPrefix AS (s1, s2) ->
    substring(s1, 1, 
        indexOf(
            arrayMap(i -> substring(s1, i, 1) != substring(s2, i, 1), range(1, least(length(s1), length(s2)) + 1)), 
            1
        ) - 1
);

使用UDF

-- 使用自定义函数
SELECT 
    user_id,
    calculate_score(clicks, views, duration) AS user_score
FROM user_metrics;

-- 查看已定义的函数
SELECT * FROM system.functions WHERE name LIKE 'my_%';

外部UDF

# Python UDF示例
def process_data(data):
    # 自定义处理逻辑
    return data.upper()

# 注册为ClickHouse UDF

数据采样

采样概念: 数据采样是ClickHouse提供的一种快速数据分析方法,通过处理部分数据来获得近似结果。

采样语法

-- 随机采样10%的数据
SELECT count() FROM events SAMPLE 0.1;

-- 按用户ID采样
SELECT count() FROM events SAMPLE 1/10 OFFSET 1/20;

-- 确定性采样
SELECT count() FROM events WHERE cityHash64(user_id) % 100 < 10;

采样应用场景

-- 快速数据探索
SELECT 
    event_type,
    count() * 10 AS estimated_count  -- 10%采样,结果乘以10
FROM events 
SAMPLE 0.1
GROUP BY event_type;

-- 性能测试
SELECT avg(duration) 
FROM events 
SAMPLE 0.01  -- 1%采样进行快速性能测试
WHERE event_date = today();

-- 数据质量检查
SELECT 
    count() AS total,
    countIf(user_id = 0) AS invalid_users,
    countIf(duration > 3600) AS long_sessions
FROM events 
SAMPLE 0.05;  -- 5%采样检查数据质量

select countIf(ssid_similarity) ssid_similar_num,
countIf(not ssid_similarity and geo6_same_num>0) geo_same_num from t5;

TTL(Time To Live)

TTL概念: TTL是ClickHouse提供的数据生命周期管理功能,可以自动删除或移动过期数据。

表级TTL

-- 创建带TTL的表
CREATE TABLE events_with_ttl (
    event_date Date,
    event_time DateTime,
    user_id UInt32,
    event_data String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id)
TTL event_date + INTERVAL 90 DAY;  -- 90天后删除数据

列级TTL

-- 列级TTL设置
CREATE TABLE user_data (
    user_id UInt32,
    name String,
    email String TTL created_at + INTERVAL 1 YEAR,  -- 邮箱1年后删除
    phone String TTL created_at + INTERVAL 6 MONTH, -- 电话6个月后删除
    created_at DateTime
) ENGINE = MergeTree()
ORDER BY user_id;

数据移动TTL

-- 数据分层存储
CREATE TABLE events_tiered (
    event_date Date,
    event_time DateTime,
    user_id UInt32,
    event_data String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id)
TTL event_date + INTERVAL 30 DAY TO DISK 'cold',  -- 30天后移动到冷存储
    event_date + INTERVAL 90 DAY DELETE;          -- 90天后删除

TTL管理

-- 修改TTL
ALTER TABLE events_with_ttl MODIFY TTL event_date + INTERVAL 60 DAY;

-- 查看TTL信息
SELECT * FROM system.table_ttl_info WHERE database = 'default';

-- 强制执行TTL
OPTIMIZE TABLE events_with_ttl FINAL;

ClickHouse 安全与权限管理

用户管理

用户创建与管理

-- 创建用户
CREATE USER analyst IDENTIFIED BY 'password123';

-- 创建只读用户
CREATE USER readonly_user IDENTIFIED BY 'readonly_pass' 
SETTINGS readonly = 1;

-- 创建具有配额限制的用户
CREATE USER limited_user IDENTIFIED BY 'limited_pass'
SETTINGS max_memory_usage = 1000000000,  -- 1GB内存限制
         max_execution_time = 60;        -- 60秒执行时间限制

角色管理

-- 创建角色
CREATE ROLE data_analyst;
CREATE ROLE data_admin;

-- 为角色分配权限
GRANT SELECT ON database.* TO data_analyst;
GRANT ALL ON database.* TO data_admin;

-- 将角色分配给用户
GRANT data_analyst TO analyst;
GRANT data_admin TO admin_user;

权限控制

数据库级权限

-- 授予数据库权限
GRANT SELECT ON database.* TO user;
GRANT INSERT ON database.table TO user;
GRANT CREATE ON database.* TO user;

-- 撤销权限
REVOKE SELECT ON database.* FROM user;

行级安全

-- 创建行级安全策略
CREATE ROW POLICY user_data_policy ON database.users
FOR SELECT USING user_id = currentUser()
TO analyst;

-- 查看策略
SELECT * FROM system.row_policies;

配额管理

-- 创建配额
CREATE QUOTA analyst_quota 
FOR INTERVAL 1 HOUR MAX queries = 1000, result_rows = 1000000
TO analyst;

-- 查看配额使用情况
SELECT * FROM system.quota_usage;

网络安全

SSL/TLS配置

<!-- config.xml -->
<clickhouse>
    <https_port>8443</https_port>
    <tcp_port_secure>9440</tcp_port_secure>
    
    <openSSL>
        <server>
            <certificateFile>/etc/clickhouse-server/server.crt</certificateFile>
            <privateKeyFile>/etc/clickhouse-server/server.key</privateKeyFile>
            <dhParamsFile>/etc/clickhouse-server/dhparam.pem</dhParamsFile>
            <verificationMode>none</verificationMode>
            <loadDefaultCAFile>true</loadDefaultCAFile>
            <cacheSessions>true</cacheSessions>
            <disableProtocols>sslv2,sslv3</disableProtocols>
            <preferServerCiphers>true</preferServerCiphers>
        </server>
    </openSSL>
</clickhouse>

IP访问控制

<!-- users.xml -->
<users>
    <default>
        <networks>
            <ip>127.0.0.1</ip>
            <ip>192.168.1.0/24</ip>
        </networks>
    </default>
</users>

ClickHouse 监控与告警

监控指标

系统监控指标

-- CPU使用率监控
SELECT 
    metric,
    value,
    description
FROM system.metrics 
WHERE metric IN (
    'OSCPUVirtualTimeMicroseconds',
    'OSCPUWaitMicroseconds',
    'OSCPUUserTimeMicroseconds'
);

-- 内存监控
SELECT 
    formatReadableSize(value) AS memory_usage,
    metric
FROM system.metrics 
WHERE metric LIKE 'Memory%'
ORDER BY value DESC;

-- 磁盘IO监控
SELECT 
    metric,
    value,
    description
FROM system.metrics 
WHERE metric LIKE '%IO%' OR metric LIKE '%Disk%';

查询性能监控

-- 慢查询监控
SELECT 
    event_time,
    query_duration_ms,
    read_rows,
    read_bytes,
    result_rows,
    result_bytes,
    memory_usage,
    query
FROM system.query_log 
WHERE query_duration_ms > 10000  -- 超过10秒的查询
AND event_time >= now() - INTERVAL 1 HOUR
ORDER BY query_duration_ms DESC
LIMIT 10;

-- 查询错误监控
SELECT 
    event_time,
    exception_code,
    exception,
    query
FROM system.query_log 
WHERE exception != ''
AND event_time >= now() - INTERVAL 1 HOUR
ORDER BY event_time DESC;

告警配置

基于Prometheus的监控

# prometheus.yml
global:
  scrape_interval: 15s

scrape_configs:
  - job_name: 'clickhouse'
    static_configs:
      - targets: ['localhost:8123']
    metrics_path: '/metrics'
    scrape_interval: 30s

告警规则

# clickhouse_alerts.yml
groups:
  - name: clickhouse
    rules:
      - alert: ClickHouseDown
        expr: up{job="clickhouse"} == 0
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: "ClickHouse instance is down"
          
      - alert: ClickHouseHighMemoryUsage
        expr: clickhouse_memory_usage_bytes / clickhouse_memory_limit_bytes > 0.9
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "ClickHouse memory usage is high"
          
      - alert: ClickHouseSlowQueries
        expr: rate(clickhouse_query_duration_seconds_sum[5m]) / rate(clickhouse_query_duration_seconds_count[5m]) > 10
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "ClickHouse has slow queries"

日志管理

日志配置

<!-- config.xml -->
<clickhouse>
    <logger>
        <level>information</level>
        <log>/var/log/clickhouse-server/clickhouse-server.log</log>
        <errorlog>/var/log/clickhouse-server/clickhouse-server.err.log</errorlog>
        <size>1000M</size>
        <count>10</count>
    </logger>
    
    <query_log>
        <database>system</database>
        <table>query_log</table>
        <flush_interval_milliseconds>7500</flush_interval_milliseconds>
    </query_log>
</clickhouse>

日志分析

-- 分析查询模式
SELECT 
    extractAllGroups(query, '(SELECT|INSERT|CREATE|DROP|ALTER)')[1] AS query_type,
    count() AS query_count,
    avg(query_duration_ms) AS avg_duration
FROM system.query_log 
WHERE event_time >= now() - INTERVAL 1 DAY
GROUP BY query_type
ORDER BY query_count DESC;

-- 分析用户活动
SELECT 
    user,
    count() AS query_count,
    sum(read_rows) AS total_read_rows,
    sum(result_rows) AS total_result_rows
FROM system.query_log 
WHERE event_time >= now() - INTERVAL 1 DAY
GROUP BY user
ORDER BY query_count DESC;

ClickHouse 业务实践与案例

实时数据分析平台

场景描述: 构建一个实时用户行为分析平台,处理每日数十亿条用户事件数据。

表结构设计

-- 用户事件表
CREATE TABLE user_events (
    event_time DateTime64(3),
    event_date Date MATERIALIZED toDate(event_time),
    user_id UInt64,
    session_id String,
    event_type LowCardinality(String),
    page_url String,
    referrer String,
    user_agent String,
    ip_address IPv4,
    country LowCardinality(String),
    city LowCardinality(String),
    device_type LowCardinality(String),
    browser LowCardinality(String),
    duration UInt32,
    properties Map(String, String)
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, user_id, event_time)
SETTINGS index_granularity = 8192;

-- 用户画像表
CREATE TABLE user_profiles (
    user_id UInt64,
    first_seen DateTime,
    last_seen DateTime,
    total_sessions UInt32,
    total_events UInt64,
    avg_session_duration Float32,
    favorite_pages Array(String),
    user_tags Array(String),
    updated_at DateTime
) ENGINE = ReplacingMergeTree(updated_at)
ORDER BY user_id;

实时聚合视图

-- 实时用户活跃度统计
CREATE MATERIALIZED VIEW user_activity_realtime
ENGINE = SummingMergeTree()
PARTITION BY toYYYYMMDD(event_date)
ORDER BY (event_date, event_hour, user_id)
AS SELECT 
    event_date,
    toHour(event_time) AS event_hour,
    user_id,
    count() AS event_count,
    uniq(session_id) AS session_count,
    sum(duration) AS total_duration
FROM user_events
GROUP BY event_date, event_hour, user_id;

-- 页面访问统计
CREATE MATERIALIZED VIEW page_stats_realtime
ENGINE = SummingMergeTree()
PARTITION BY toYYYYMMDD(event_date)
ORDER BY (event_date, page_url)
AS SELECT 
    event_date,
    page_url,
    count() AS page_views,
    uniq(user_id) AS unique_visitors,
    avg(duration) AS avg_duration
FROM user_events
WHERE event_type = 'page_view'
GROUP BY event_date, page_url;

查询优化示例

-- 用户漏斗分析
WITH funnel_events AS (
    SELECT 
        user_id,
        event_type,
        event_time,
        row_number() OVER (PARTITION BY user_id ORDER BY event_time) AS step
    FROM user_events
    WHERE event_date = today()
    AND event_type IN ('page_view', 'add_to_cart', 'checkout', 'purchase')
)
SELECT 
    event_type,
    count(DISTINCT user_id) AS users,
    count(DISTINCT user_id) / (SELECT count(DISTINCT user_id) FROM funnel_events WHERE event_type = 'page_view') AS conversion_rate
FROM funnel_events
GROUP BY event_type
ORDER BY step;

-- 用户留存分析
SELECT 
    first_date,
    day_diff,
    count(DISTINCT user_id) AS retained_users,
    count(DISTINCT user_id) / any(total_users) AS retention_rate
FROM (
    SELECT 
        user_id,
        min(event_date) AS first_date,
        event_date,
        dateDiff('day', first_date, event_date) AS day_diff
    FROM user_events
    WHERE event_date >= today() - INTERVAL 30 DAY
    GROUP BY user_id, event_date
) t1
JOIN (
    SELECT 
        first_date,
        count(DISTINCT user_id) AS total_users
    FROM (
        SELECT 
            user_id,
            min(event_date) AS first_date
        FROM user_events
        WHERE event_date >= today() - INTERVAL 30 DAY
        GROUP BY user_id
    )
    GROUP BY first_date
) t2 USING first_date
WHERE day_diff IN (1, 3, 7, 14, 30)
GROUP BY first_date, day_diff
ORDER BY first_date, day_diff;

日志分析系统

场景描述: 构建一个分布式日志分析系统,处理应用程序、系统和安全日志。

日志表设计

-- 应用日志表
CREATE TABLE application_logs (
    timestamp DateTime64(3),
    log_date Date MATERIALIZED toDate(timestamp),
    level LowCardinality(String),
    service LowCardinality(String),
    host LowCardinality(String),
    message String,
    exception Nullable(String),
    trace_id Nullable(String),
    span_id Nullable(String),
    user_id Nullable(UInt64),
    request_id Nullable(String),
    duration Nullable(UInt32),
    status_code Nullable(UInt16),
    tags Map(String, String)
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(log_date)
ORDER BY (log_date, service, level, timestamp)
SETTINGS index_granularity = 8192;

-- 系统指标表
CREATE TABLE system_metrics (
    timestamp DateTime,
    metric_date Date MATERIALIZED toDate(timestamp),
    host LowCardinality(String),
    metric_name LowCardinality(String),
    metric_value Float64,
    tags Map(String, String)
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(metric_date)
ORDER BY (metric_date, host, metric_name, timestamp);

日志分析查询

-- 错误日志统计
SELECT 
    service,
    level,
    count() AS error_count,
    uniq(trace_id) AS unique_traces
FROM application_logs
WHERE log_date = today()
AND level IN ('ERROR', 'FATAL')
GROUP BY service, level
ORDER BY error_count DESC;

-- 性能分析
SELECT 
    service,
    quantile(0.5)(duration) AS p50_duration,
    quantile(0.95)(duration) AS p95_duration,
    quantile(0.99)(duration) AS p99_duration,
    avg(duration) AS avg_duration
FROM application_logs
WHERE log_date = today()
AND duration IS NOT NULL
GROUP BY service
ORDER BY p95_duration DESC;

-- 异常模式分析
SELECT 
    service,
    extractAllGroups(exception, '([A-Za-z]+Exception)')[1] AS exception_type,
    count() AS occurrence_count,
    any(exception) AS sample_exception
FROM application_logs
WHERE log_date >= today() - INTERVAL 7 DAY
AND exception IS NOT NULL
GROUP BY service, exception_type
ORDER BY occurrence_count DESC
LIMIT 20;

时序数据存储

场景描述: 构建一个IoT时序数据存储系统,处理传感器数据和设备状态信息。

时序表设计

-- 传感器数据表
CREATE TABLE sensor_data (
    timestamp DateTime64(3),
    date Date MATERIALIZED toDate(timestamp),
    device_id LowCardinality(String),
    sensor_type LowCardinality(String),
    location LowCardinality(String),
    value Float64,
    unit LowCardinality(String),
    quality UInt8,  -- 数据质量评分 0-100
    metadata Map(String, String)
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, device_id, sensor_type, timestamp)
SETTINGS index_granularity = 8192;

-- 设备状态表
CREATE TABLE device_status (
    timestamp DateTime,
    date Date MATERIALIZED toDate(timestamp),
    device_id LowCardinality(String),
    status LowCardinality(String),  -- online, offline, maintenance
    battery_level Nullable(UInt8),
    signal_strength Nullable(Int8),
    firmware_version LowCardinality(String),
    last_maintenance Nullable(DateTime)
) ENGINE = ReplacingMergeTree(timestamp)
PARTITION BY toYYYYMM(date)
ORDER BY (date, device_id);

时序数据分析

-- 设备健康度监控
SELECT 
    device_id,
    location,
    avg(value) AS avg_temperature,
    min(value) AS min_temperature,
    max(value) AS max_temperature,
    stddevPop(value) AS temperature_variance,
    countIf(quality < 80) AS low_quality_readings
FROM sensor_data
WHERE date = today()
AND sensor_type = 'temperature'
GROUP BY device_id, location
HAVING countIf(quality < 80) > 10
ORDER BY temperature_variance DESC;

-- 异常检测
WITH stats AS (
    SELECT 
        device_id,
        sensor_type,
        avg(value) AS mean_value,
        stddevPop(value) AS std_value
    FROM sensor_data
    WHERE date >= today() - INTERVAL 7 DAY
    GROUP BY device_id, sensor_type
)
SELECT 
    s.timestamp,
    s.device_id,
    s.sensor_type,
    s.value,
    st.mean_value,
    abs(s.value - st.mean_value) / st.std_value AS z_score
FROM sensor_data s
JOIN stats st ON s.device_id = st.device_id AND s.sensor_type = st.sensor_type
WHERE s.date = today()
AND abs(s.value - st.mean_value) / st.std_value > 3  -- 3σ异常检测
ORDER BY z_score DESC;

-- 时间序列预测(简单移动平均)
SELECT 
    device_id,
    sensor_type,
    timestamp,
    value AS actual_value,
    avg(value) OVER (
        PARTITION BY device_id, sensor_type 
        ORDER BY timestamp 
        ROWS BETWEEN 11 PRECEDING AND 1 PRECEDING
    ) AS predicted_value
FROM sensor_data
WHERE date >= today() - INTERVAL 1 DAY
AND sensor_type = 'temperature'
ORDER BY device_id, timestamp;

ClickHouse 故障排查与优化

常见问题诊断

内存问题排查

-- 查看内存使用情况
SELECT 
    formatReadableSize(value) AS memory_usage,
    metric
FROM system.metrics 
WHERE metric LIKE 'Memory%'
ORDER BY value DESC;

-- 查看大查询内存使用
SELECT 
    query_id,
    user,
    formatReadableSize(memory_usage) AS memory_used,
    formatReadableSize(peak_memory_usage) AS peak_memory,
    query_duration_ms,
    substr(query, 1, 100) AS query_preview
FROM system.processes
WHERE memory_usage > 1000000000  -- 大于1GB
ORDER BY memory_usage DESC;

-- 内存泄漏检测
SELECT 
    event_time,
    formatReadableSize(memory_usage) AS memory_used,
    query_duration_ms,
    type,
    query_id
FROM system.query_log
WHERE event_time >= now() - INTERVAL 1 HOUR
AND memory_usage > 5000000000  -- 大于5GB
ORDER BY memory_usage DESC;

性能问题排查

-- 慢查询分析
SELECT 
    event_time,
    query_duration_ms / 1000 AS duration_seconds,
    read_rows,
    read_bytes,
    formatReadableSize(read_bytes) AS read_size,
    result_rows,
    substr(query, 1, 200) AS query_preview
FROM system.query_log
WHERE event_time >= now() - INTERVAL 1 HOUR
AND query_duration_ms > 30000  -- 超过30秒
ORDER BY query_duration_ms DESC
LIMIT 10;

-- 表扫描分析
SELECT 
    database,
    table,
    sum(read_rows) AS total_read_rows,
    sum(read_bytes) AS total_read_bytes,
    count() AS query_count,
    avg(query_duration_ms) AS avg_duration
FROM system.query_log
WHERE event_time >= now() - INTERVAL 1 HOUR
AND read_rows > 1000000  -- 读取超过100万行
GROUP BY database, table
ORDER BY total_read_rows DESC;

磁盘问题排查

-- 磁盘使用情况
SELECT 
    database,
    table,
    formatReadableSize(sum(data_compressed_bytes)) AS compressed_size,
    formatReadableSize(sum(data_uncompressed_bytes)) AS uncompressed_size,
    count() AS parts_count,
    sum(rows) AS total_rows
FROM system.parts
WHERE active = 1
GROUP BY database, table
ORDER BY sum(data_compressed_bytes) DESC;

-- 分区碎片化检查
SELECT 
    database,
    table,
    partition,
    count() AS parts_count,
    sum(rows) AS total_rows,
    formatReadableSize(sum(data_compressed_bytes)) AS size
FROM system.parts
WHERE active = 1
GROUP BY database, table, partition
HAVING parts_count > 10  -- 分区碎片化严重
ORDER BY parts_count DESC;

性能调优策略

查询优化

-- 使用EXPLAIN分析查询计划
EXPLAIN SYNTAX SELECT * FROM events WHERE user_id = 123;
EXPLAIN PLAN SELECT * FROM events WHERE user_id = 123;

-- 优化JOIN查询
-- 不好的写法:大表JOIN大表
SELECT * FROM events e JOIN users u ON e.user_id = u.id;

-- 好的写法:使用字典或预聚合
SELECT 
    e.*,
    dictGet('user_dict', 'name', e.user_id) AS user_name
FROM events e;

-- 使用子查询优化
SELECT * FROM events 
WHERE user_id IN (
    SELECT id FROM users WHERE country = 'US'
);

索引优化

-- 添加跳表索引
ALTER TABLE events ADD INDEX idx_event_type event_type TYPE bloom_filter GRANULARITY 1;
ALTER TABLE events ADD INDEX idx_user_id user_id TYPE minmax GRANULARITY 1;

-- 创建投影索引
ALTER TABLE events ADD PROJECTION user_events_proj (
    SELECT user_id, event_type, count()
    GROUP BY user_id, event_type
);

-- 优化ORDER BY
-- 不好的设计
ORDER BY (event_time, user_id)  -- 时间在前,查询用户数据效率低

-- 好的设计
ORDER BY (user_id, event_time)  -- 用户在前,便于用户维度查询

写入优化

-- 批量写入优化
SET max_insert_block_size = 1048576;  -- 1M行批量写入
SET max_insert_threads = 4;           -- 4个线程并行写入

-- 异步写入
SET async_insert = 1;
SET wait_for_async_insert = 0;
SET async_insert_max_data_size = 10485760;  -- 10MB缓冲

-- 写入去重优化
INSERT INTO events_dedup 
SELECT DISTINCT * FROM events_raw;  -- 应用层去重

-- 使用ReplacingMergeTree自动去重
CREATE TABLE events_auto_dedup (
    event_id UInt64,
    event_time DateTime,
    user_id UInt32,
    event_data String
) ENGINE = ReplacingMergeTree(event_time)
ORDER BY event_id;

集群运维

集群健康检查

-- 检查集群状态
SELECT * FROM system.clusters;

-- 检查副本状态
SELECT 
    database,
    table,
    replica_name,
    is_leader,
    is_readonly,
    absolute_delay,
    queue_size
FROM system.replicas;

-- 检查分片数据分布
SELECT 
    shard_num,
    replica_num,
    host_name,
    formatReadableSize(sum(data_compressed_bytes)) AS data_size,
    sum(rows) AS row_count
FROM system.parts
JOIN system.clusters ON host_name = host_address
GROUP BY shard_num, replica_num, host_name
ORDER BY shard_num, replica_num;

数据一致性检查

-- 检查副本数据一致性
SELECT 
    database,
    table,
    replica_name,
    total_replicas,
    active_replicas,
    absolute_delay
FROM system.replicas
WHERE absolute_delay > 300;  -- 延迟超过5分钟

-- 强制同步副本
SYSTEM SYNC REPLICA database.table;

-- 重建副本
SYSTEM RESTART REPLICA database.table;

容量规划

-- 数据增长趋势分析
SELECT 
    toYYYYMM(event_date) AS month,
    formatReadableSize(sum(data_compressed_bytes)) AS monthly_size,
    sum(rows) AS monthly_rows
FROM system.parts
WHERE database = 'analytics'
GROUP BY month
ORDER BY month;

-- 预测存储需求
WITH growth_rate AS (
    SELECT 
        avg(data_compressed_bytes) AS avg_daily_growth
    FROM (
        SELECT 
            event_date,
            sum(data_compressed_bytes) AS data_compressed_bytes
        FROM system.parts
        WHERE database = 'analytics'
        AND event_date >= today() - INTERVAL 30 DAY
        GROUP BY event_date
    )
)
SELECT 
    formatReadableSize(avg_daily_growth * 365) AS estimated_yearly_growth
FROM growth_rate;

集群配置

基本集群配置示例

<!-- /etc/clickhouse-server/config.d/cluster.xml -->
<clickhouse>
    <remote_servers>
        <analytics_cluster>
            <!-- 第一个分片 -->
            <shard>
                <weight>1</weight>
                <internal_replication>true</internal_replication>
                <replica>
                    <host>ch-node1.example.com</host>
                    <port>9000</port>
                    <user>default</user>
                    <password></password>
                </replica>
                <replica>
                    <host>ch-node2.example.com</host>
                    <port>9000</port>
                    <user>default</user>
                    <password></password>
                </replica>
            </shard>
            
            <!-- 第二个分片 -->
            <shard>
                <weight>1</weight>
                <internal_replication>true</internal_replication>
                <replica>
                    <host>ch-node3.example.com</host>
                    <port>9000</port>
                    <user>default</user>
                    <password></password>
                </replica>
                <replica>
                    <host>ch-node4.example.com</host>
                    <port>9000</port>
                    <user>default</user>
                    <password></password>
                </replica>
            </shard>
        </analytics_cluster>
    </remote_servers>
    
    <!-- ZooKeeper配置 -->
    <zookeeper>
        <node>
            <host>zk1.example.com</host>
            <port>2181</port>
        </node>
        <node>
            <host>zk2.example.com</host>
            <port>2181</port>
        </node>
        <node>
            <host>zk3.example.com</host>
            <port>2181</port>
        </node>
    </zookeeper>
    
    <!-- 宏定义 -->
    <macros>
        <cluster>analytics_cluster</cluster>
        <shard>01</shard>
        <replica>replica1</replica>
    </macros>
</clickhouse>